
Fully Countering Trusting Trust through Diverse Double-Compiling

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy at George Mason University

By

David A. Wheeler
Master of Science

George Mason University, 1994
Bachelor of Science

George Mason University, 1988

Co-Directors: Dr. Daniel A. Menascé and Dr. Ravi Sandhu, Professors
The Volgenau School of Information Technology & Engineering

Fall Semester 2009
George Mason University

Fairfax, VA

Copyright © 2009 David A. Wheeler

You may use and redistribute this work under the
Creative Commons Attribution-Share Alike (CC-BY-SA) 3.0 United States License.

You are free to Share (to copy, distribute, display, and perform the work)
and to Remix (to make derivative works), under the following conditions:

(1) Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

(2) Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

Alternatively, permission is also granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation.

As a third alternative, permission is also granted to copy, distribute and/or modify this document
under the terms of the GNU General Public License (GPL) version 2

or any later version published by the Free Software Foundation.

All trademarks, service marks, logos, and company names
mentioned in this work are the property of their respective owners.

ii

http://www.dwheeler.com/
http://www.fsf.org/
http://www.fsf.org/
file:///C:/Documents and Settings/dwheeler/dwheeler.com/trusting-trust/dissertation/ http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/us/

Dedication

This is dedicated to my wife and children, who sacrificed many days so I could perform this
work, to my extended family, and to the memory of my former mentors Dennis W. Fife and
Donald Macleay, who always believed in me.

Soli Deo gloria—Glory to God alone.

iii

Acknowledgments

I would like to thank my PhD committee members and former members Dr. Daniel A. Menascé,
Dr. Ravi Sandhu, Dr. Paul Ammann, Dr. Jeff Offutt, Dr. Yutao Zhong, and Dr. David Rine, for
their helpful comments.

The Institute for Defense Analyses (IDA) provided a great deal of help. Dr. Roger Mason and the
Honorable Priscilla Guthrie, former directors of IDA’s Information Technology and Systems
Division (ITSD), partly supported this work through IDA’s Central Research Program. Dr.
Margaret E. Myers, current IDA ITSD director, approved its final release. I am very grateful to
my IDA co-workers (alphabetically by last name) Dr. Brian Cohen, Aaron Hatcher, Dr. Dale
Lichtblau, Dr. Reg Meeson, Dr. Clyde Moseberry, Dr. Clyde Roby, Dr. Ed Schneider, Dr. Marty
Stytz, and Dr. Andy Trice, who had many helpful comments on this dissertation and/or the
previous ACSAC paper. Reg Meeson in particular spent many hours carefully reviewing the
proofs and related materials, and Clyde Roby carefully reviewed the whole dissertation; I thank
them both. Aaron Hatcher was immensely helpful in working to scale the Diverse Double-
Compiling (DDC) technique up to a real-world application using GCC. In particular, Aaron
helped implement many applications of DDC that we thought should have worked with GCC, but
didn’t, and then helped to determine why they didn’t work. These “Edison successes” (which
successfully found out what did not work) were important in helping to lead to a working
application of DDC to GCC.

Many others also helped create this work. The work of Dr. Paul A. Karger, Dr. Roger R. Schell,
and Ken Thompson made the world aware of a problem that needed solving; without knowing
there was a problem, there would have been no work to solve it. Henry Spencer posted the first
version of this idea that eventually led to this dissertation (though this dissertation expands on it
far beyond the few sentences that he wrote). Henry Spencer, Eric S. Raymond, and the
anonymous ACSAC reviewers provided helpful comments on the ACSAC paper. I received
many helpful comments and other information after publication of the ACSAC paper, including
comments from (alphabetically by last name) Bill Alexander, Dr. Steven M. Bellovin, Terry
Bollinger, Ulf Dittmer, Jakub Jelinek, Dr. Paul A. Karger, Ben Laurie, Mike Lisanke, Thomas
Lord, Bruce Schneier, Brian Snow, Ken Thompson, Dr. Larry Wagoner, and James Walden.
Tawnia Wheeler proofread both the ACSAC paper and this document; thank you! My thanks to
the many developers of the OpenDocument specification and the OpenOffice.org implementation,
who made developing this document a joy.

iv

Table of Contents

Page
List of Tables...viii
List of Figures..ix
List of Abbreviations and Symbols...x
Abstract...xiv
1 Introduction...1
2 Background and related work..4

2.1 Initial revelation: Karger, Schell, and Thompson...4
2.2 Other work on corrupted compilers...6
2.3 Compiler bootstrap test..9
2.4 Analyzing software..10

2.4.1 Static analysis..11
2.4.2 Dynamic analysis...14

2.5 Diversity for security...16
2.6 Subversion of software is a real problem...17
2.7 Previous DDC paper..21

3 Description of threat..23
3.1 Attacker motivation..23
3.2 Triggers, payloads, and non-discovery...27

4 Informal description of Diverse Double-Compiling (DDC)...30
4.1 Terminology and notation..30
4.2 Informal description of DDC...32
4.3 Informal assumptions...35
4.4 DDC does not require that different compilers produce identical executables...................37
4.5 Special case: Self-parenting compiler..38
4.6 Why not always use the trusted compiler?...40
4.7 Why is DDC different from N-version programming?...41
4.8 DDC works with randomly-corrupting compilers..43

5 Formal proof..44
5.1 Graphical model for formal proof ...45

5.1.1 Types..46
5.1.2 DDC components...47
5.1.3 Claimed origin...48

5.2 Formal notation: First-Order Logic (FOL)...49
5.3 Proof step rationales (derivation rules or rules of inference)..51
5.4 Tools and rationale for confidence in the proofs..54

5.4.1 Early DDC proof efforts..54
5.4.2 Prover9, mace4, and ivy...54

v

5.4.3 Tool limitations..56
5.4.4 Proofs’ conclusions follow from their assumptions..57
5.4.5 Proofs’ assumptions and goals adequately model the world.......................................57

5.5 Proof conventions..59
5.6 Proof #1: Goal source_corresponds_to_executable..60

5.6.1 Predicate “=” given two executables..60
5.6.2 Predicate exactly_correspond...62
5.6.3 Predicate accurately_translates..63
5.6.4 Assumption cT_compiles_sP...63

5.6.4.1 Implications for the language...64
5.6.4.2 Implications for the trusted compiler and its environment.................................66

5.6.5 Function compile...69
5.6.6 Assumption sP_compiles_sA...71
5.6.7 Definition definition_stage1...72
5.6.8 Definition define_exactly_correspond...72
5.6.9 Definition definition_stage2...73
5.6.10 Goal source_corresponds_to_executable...73
5.6.11 Prover9 proof of source_corresponds_to_executable...74
5.6.12 Discussion of proof #1...75

5.7 Proof #2: Goal always_equal...76
5.7.1 Reused definitions define_exactly_correspond, definition_stage1, and
definition_stage2..77
5.7.2 Assumption cT_compiles_sP...78
5.7.3 Predicate deterministic_and_portable..78
5.7.4 Function run...79
5.7.5 Function converttext..80
5.7.6 Function extract...81
5.7.7 Function retarget..81
5.7.8 Assumption sP_portable_and_deterministic..81
5.7.9 Definition define_portable_and_deterministic...83
5.7.10 Assumption cP_corresponds_to_sP..84
5.7.11 Definition define_compile..85
5.7.12 Definition definition_cA..86
5.7.13 Goal always_equal...86
5.7.14 Prover9 proof of always_equal..86
5.7.15 Discussion of proof #2...88

5.8 Proof #3: Goal cP_corresponds_to_sP...89
5.8.1 Definition definition_cP...90
5.8.2 Assumption cGP_compiles_sP...90
5.8.3 Goal cP_corresponds_to_sP...90
5.8.4 Prover9 proof of cP_corresponds_to_sP..90
5.8.5 Discussion of proof #3...91

6 Methods to increase diversity...92
6.1 Diversity in compiler implementation..93
6.2 Diversity in time..93
6.3 Diversity in environment...95
6.4 Diversity in source code input..95

7 Demonstrations of DDC...98

vi

7.1 tcc..98
7.1.1 Test configuration..99
7.1.2 Diverse double-compiling tcc..100
7.1.3 Defect in sign-extending cast 8-bit values..102
7.1.4 Long double constant problem...105
7.1.5 Final results with tcc demonstration...106

7.2 Goerigk Lisp compilers..106
7.3 GCC...109

7.3.1 Setup for GCC...109
7.3.2 Challenges..113

7.3.2.1 Master result directory...113
7.3.2.2 Obsolete format for tail..114
7.3.2.3 Libiberty library...115

7.3.3 GCC Results..117
8 Practical challenges..118

8.1 Limitations...118
8.2 Non-determinism...119
8.3 Difficulty in finding alternative compilers...120
8.4 Countering “pop-up” attacks..121
8.5 Multiple sub-components...121
8.6 Timestamps and inexact comparison..122
8.7 Interpreters and recompilation dependency loops..124
8.8 Untrusted environments and broadening DDC application..125
8.9 Trusted build agents...126
8.10 Application problems with current distributions..127
8.11 Finding errors and maliciously misleading code..129
8.12 Hardware..130
8.13 Complex libraries and frameworks..135
8.14 How can an attacker counter DDC?...136

9 Conclusions and ramifications...140
Appendix A: Lisp results...144

A.1 Source code for correct compiler..144
A.2 Compiled code for correct compiler..145
A.3 Compilation of factorial function..146
A.4 Compilation of login function...146
A.5 DDC application...147

Appendix B: Detailed GCC results...153
Appendix C: Model results...156

9.1 Proof #1 model...157
9.2 Proof #2 model...159
9.3 Proof #3 model...162

Appendix D: Guidelines for Compiler Suppliers..165
Appendix E: Key definitions...170
Bibliography...172

vii

List of Tables

Table Page
Table 1: FOL notation...50
Table 2: Proof #1 (source_corresponds_to_executable) in prover9 format...................................74
Table 3: Proof #2 (always_equal) in prover9 format...87
Table 4: Proof #3 (cP_corresponds_to_sP) in prover9 format...91
Table 5: Statistics for GCC C compiler, both compiler-under-test and DDC result.....................154

viii

List of Figures

Figure Page
Figure 1: Illustration of graphical notation..31
Figure 2: Informal graphical representation of DDC..33
Figure 3: Informal graphical representation of DDC for self-regeneration case............................39
Figure 4: Graphical representation of DDC formal model..45
Figure 5: Diverse double-compiling with self-regeneration check, using tcc..............................101
Figure 6: DDC applied to GCC...113

ix

List of Abbreviations and Symbols

-A not A. Equivalent to ¬A

A & B A and B (logical and). Equivalent to A∧B

A | B A or B (logical or). Equivalent to A∨B

A -> B A implies B. Equivalent to AB and ¬A∨B

ACL2 A Computational Logic for Applicative Common Lisp

ACSAC Annual Computer Security Applications Conference

aka also known as

all X A for all X, A. Equivalent to ∀ X. A

ANSI American National Standards Institute

API Application Programmer Interface

ASCII American Standard Code for Information Interchange

BIOS Basic input/output system

BSD Berkeley Software Distribution

cA or cA Compiler cA, the compiler-under-test executable (see sA)

cGP or cGP Compiler cGP, the putative grandparent of cA and putative parent of cP

CNSS Committee on National Security Systems

cP or cP Compiler P, the putative parent of cA

CP/M Control Program for Microcomputers

CPU Central Processing Unit

cT or cT Compiler cT, a “trusted” compiler (see section 4.3)

x

DDC Diverse Double-Compiling

DoD Department of Defense (U.S.)

DOS Disk Operating System

DRAM Dynamic Random Access Memory

e1 Environment that produces stage1

e2 Environment that produces stage2

eA Environment that putatively produced cA

eArun Environment that cA and stage2 are intended to run in

EBCDIC Extended Binary Coded Decimal Interchange Code

ECC Error Correcting Code(s)

eP Environment that putatively produced cP

FOL First-Order Logic (with equality), aka first-order predicate logic

FS Free Software

FLOSS Free-Libre/Open Source Software

FOSS Free/Open Source Software

FSF Free Software Foundation

GAO General Accounting Office (U.S.)

GCC GNU Compiler Collection (formerly the GNU C compiler)

GNU GNU’s not Unix

GPL General Public License

HOL Higher Order Logic

IC Integrated Circuit

IDA Institute for Defense Analyses

iff if and only if

xi

I/O input/output

IP Intellectual Property

ISO International Organization for Standardization (sic)

ITSD Information Technology and Systems Division

MDA Missile Defense Agency (U.S.); formerly named SDIO

MS-DOS Microsoft Disk Operating System (MS-DOS)

NEL Newline (#x85), used in OS/360

NIST National Institute of Science and Technology (U.S.)

OpenBSD Open Berkeley Software Distribution

OS/360 IBM System/390 operating-system

OSI Open Source Initiative

OSS Open Source Software

OSS/FS Open Source Software/Free Software

PITAC President’s Information Technology Advisory Committee

ProDOS Professional Disk Operating System

PVS Prototype Verification System

QED Quod erat demonstrandum (“which was to be demonstrated”)

RepRap Replicating Rapid-prototyper

S-expression Symbolic expression

sA or sA putative source code of cA

SAMATE Software Assurance Metrics And Tool Evaluation (NIST project)

SDIO Strategic Defense Initiative Organization (U.S.); later renamed to the Missile
Defense Agency (MDA)

SHA Secure Hash Algorithm

sic spelling is correct

xii

sP or sP putative source code of cP

SQL Structured Query Language

STEM Scanning Transmission Electron Microscope

tcc or TinyCC Tiny C Compiler

UCS Universal Character Set

URL Uniform Resource Locator

U.S. United States

UTF-8 8-bit UCS/Unicode Transformation Format

UTF-16 16-bit UCS/Unicode Transformation Format

VHDL VHSIC hardware description language

VHSIC Very High Speed Integrated Circuit

, , Arbitrary FOL formula

x Arbitrary FOL term number x

See appendix E for key definitions.

xiii

Abstract

FULLY COUNTERING TRUSTING TRUST THROUGH DIVERSE DOUBLE-COMPILING

David A. Wheeler, PhD

George Mason University, 2009

Dissertation Directors: Dr. Daniel A. Menascé and Dr. Ravi Sandhu

An Air Force evaluation of Multics, and Ken Thompson’s Turing award lecture (“Reflections on

Trusting Trust”), showed that compilers can be subverted to insert malicious Trojan horses into

critical software, including themselves. If this “trusting trust” attack goes undetected, even

complete analysis of a system’s source code will not find the malicious code that is running.

Previously-known countermeasures have been grossly inadequate. If this attack cannot be

countered, attackers can quietly subvert entire classes of computer systems, gaining complete

control over financial, infrastructure, military, and/or business systems worldwide. This

dissertation’s thesis is that the trusting trust attack can be detected and effectively countered using

the “Diverse Double-Compiling” (DDC) technique, as demonstrated by (1) a formal proof that

DDC can determine if source code and generated executable code correspond, (2) a

demonstration of DDC with four compilers (a small C compiler, a small Lisp compiler, a small

maliciously corrupted Lisp compiler, and a large industrial-strength C compiler, GCC), and (3) a

description of approaches for applying DDC in various real-world scenarios. In the DDC

technique, source code is compiled twice: the source code of the compiler’s parent is compiled

using a trusted compiler, and then the putative compiler source code is compiled using the result of

the first compilation. If the DDC result is bit-for-bit identical with the original compiler-under-test’s

executable, and certain other assumptions hold, then the compiler-under-test’s executable corresponds

with its putative source code.

1 Introduction

Many software security evaluations examine source code, under the assumption that a program’s

source code accurately represents the executable actually run by the computer1. Naïve developers

presume that this can be assured simply by recompiling the source code to see if the same

executable is produced. Unfortunately, the “trusting trust” attack can falsify this presumption.

For purposes of this dissertation, an executable that does not correspond to its putative source

code is corrupted2. If a corrupted executable was intentionally created, we can call it a

maliciously corrupted executable. The trusting trust attack occurs when an attacker attempts to

disseminate a compiler executable that produces corrupted executables, at least one of those

produced corrupted executables is a corrupted compiler, and the attacker attempts to make this

situation self-perpetuating. The attacker may use this attack to insert other Trojan horse(s)

(software that appears to the user to perform a desirable function but facilitates unauthorized

access into the user’s computer system).

1An executable is data that can be directly executed by a computing environment. An executable may
be code for an actual machine or for a simulated machine (e.g., a “byte code”). A common alternative term
for executable is “binary” (e.g., [Sabin2004]), but this term is misleading; in modern computers, all data is
represented using binary codes. For purposes of this dissertation, “object code” is a synonym for
“executable”. Source code is a representation of a program that can be translated into an executable, and is
typically human-readable. A compiler is an executable that when executed translates source code into an
executable (it may also perform other actions). An assembler is a compiler for a language whose
instructions are primarily a close approximation of the executing environment’s instructions. The process
of using a compiler to translate source code into an executable is termed compiling.

2An executable e corresponds to source code s if and only if execution of e always behaves as specified
by s when the execution environment of e behaves correctly.

1

Information about the trusting trust attack was first published in [Karger1974]; it became widely

known through [Thompson1984]. Unfortunately, there has been no practical way to fully detect

or counter the trusting trust attack, because repeated in-depth review of industrial compilers’

executable code is impractical.

For source code evaluations to be strongly credible, there must be a way to justify that the source

code being examined accurately represents what is being executed—yet the trusting trust attack

subverts that very claim. Internet Security System’s David Maynor argues that the risk of attacks

on compilation processes is increasing [Maynor2004] [Maynor2005]. Karger and Schell noted

that the trusting trust attack was still a problem in 2000 [Karger2000], and some technologists

doubt that computer-based systems can ever be secure because of the existence of this attack

[Gauis2000]. Anderson et al. argue that the general risk of subversion is increasing

[Anderson2004].

Recently, in several mailing lists and blogs, a technique to detect such attacks has been briefly

described, which uses a second (diverse) “trusted” compiler (as will be defined in section 4.3) and

two compilation stages. This dissertation terms the technique “diverse double-compiling”

(DDC). In the DDC technique, the source code of the compiler’s parent is compiled using a

trusted compiler, and then the putative compiler source code is compiled using the result of the

first compilation (chapter 4 further explains this). If the DDC result is bit-for-bit identical with

the original compiler-under-test’s executable, and certain other assumptions hold, then the

compiler-under-test’s executable corresponds with its putative source code (chapter 5 justifies this

claim). Before this work began, there had been no examination of DDC in detail which identified

its assumptions, proved its correctness or effectiveness, or discussed practical issues in applying

it. There had also not been any public demonstration of DDC.

2

This dissertation’s thesis is that the trusting trust attack can be detected and effectively countered

using the “Diverse Double-Compiling” (DDC) technique, as demonstrated by (1) a formal proof

that DDC can determine if source code and generated executable code correspond, (2) a

demonstration of DDC with four compilers (a small C compiler, a small Lisp compiler, a small

maliciously corrupted Lisp compiler, and a large industrial-strength C compiler, GCC), and (3) a

description of approaches for applying DDC in various real-world scenarios.

This dissertation provides background and a description of the threat, followed by an informal

description of DDC. This is followed by a formal proof of DDC, information on how diversity (a

key requirement of DDC) can be increased, demonstrations of DDC, and information on how to

overcome practical challenges in applying DDC. The dissertation closes with conclusions and

ramifications. Appendices have some additional detail. Further details, including materials

sufficient to reproduce the experiments, are available at:

http://www.dwheeler.com/trusting-trust/

This dissertation follows the guidelines of [Bailey1996] to enhance readability. In addition, this

dissertation uses logical (British) quoting conventions; quotes do not enclose punctuation unless

they are part of the quote [Ritter2002]. Including extraneous characters in a quotation can be

grossly misleading, especially in computer-related material [Raymond2003, chapter 5].

3

http://www.dwheeler.com/trusting-trust/

2 Background and related work

This chapter provides background and related work. It begins with a discussion of the initial

revelation of the trusting trust attack by Karger, Schell, and Thompson, including a brief

description of “obvious” yet inadequate solutions. The next sections discuss work on corrupted

or subverted compilers, the compiler bootstrap test, general work on analyzing software, and

general approaches for using diversity to improve security. This is followed by evidence that

software subversion is a real problem, not just a theoretical concern. This chapter concludes by

discussing the DDC paper published by the Annual Computer Security Applications Conference

(ACSAC) [Wheeler2005] and the improvements to DDC that have been made since that time.

2.1 Initial revelation: Karger, Schell, and Thompson

Karger and Schell provided the first public description of the problem that compiler executables

can insert malicious code into themselves. They noted in their examination of Multics

vulnerabilities that a “penetrator could insert a trap door into the... compiler... [and] since the PL/I

compiler is itself written in PL/I, the trap door can maintain itself, even when the compiler is

recompiled. Compiler trap doors are significantly more complex than the other trap doors...

However, they are quite practical to implement” [Karger1974].

Ken Thompson widely publicized this problem in his 1984 Turing Award presentation

(“Reflections on Trusting Trust”), clearly explaining it and demonstrating that this was both a

practical and dangerous attack. He described how to modify the Unix C compiler to inject a

4

Trojan horse, in this case to modify the operating system login program to surreptitiously give

him root access. He also added code so that the compiler would inject a Trojan Horse when

compiling itself, so the compiler became a “self-reproducing program that inserts both Trojan

horses into the compiler”. Once this is done, the attacks could be removed from the source code.

At that point no source code examination—even of the compiler—would reveal the existence of

the Trojan horses, yet the attacks could persist through recompilations and cross-compilations of

the compiler. He then stated that “No amount of source-level verification or scrutiny will protect

you from using untrusted code... I could have picked on any program-handling program such as

an assembler, a loader, or even hardware microcode. As the level of program gets lower, these

defects will be harder and harder to detect” [Thompson1984]. Thompson’s demonstration also

subverted the disassembler, hiding the attack from disassembly. Thompson implemented this

attack in the C compiler and (as a demonstration) successfully subverted another Bell Labs group,

the attack was never detected.

Thompson later gave more details about his demonstration, including assurances that the

maliciously corrupted compiler was never released outside Bell Labs [Thornburg2000].

Obviously, this attack invalidates security evaluations based on source code review, and

recompilation of source code using a potentially-corrupted compiler does not eliminate the risk.

Some simple approaches appear to solve the problem at first glance, yet fail to do so or have

significant weaknesses:

• Compiler executables could be manually compared with their source code. This is

impractical given compilers’ large sizes, complexity, and rate of change.

5

• Such comparison could be automated, but optimizing compilers make such comparisons

extremely difficult, compiler changes make keeping such tools up-to-date difficult, and

the tool’s complexity would be similar to a compiler’s.

• A second compiler could compile the source code, and then the executables could be

compared automatically to argue semantic equivalence. There is some work in

determining the semantic equivalence of two different executables [Sabin2004], but this

is very difficult to do in practice.

• Receivers could require that they only receive source code and then recompile everything

themselves. This fails if the receiver’s compiler is already maliciously corrupted; thus, it

simply moves the attack location. An attacker could also insert the attack into the

compiler’s source; if the receiver accepts it (due to lack of diligence or conspiracy), the

attacker could remove the evidence in a later version of the compiler (as further discussed

in section 8.4).

• Programs can be written in interpreted languages. But eventually an interpreter must be

implemented by machine code, so this simply moves the attack location.

2.2 Other work on corrupted compilers

Some previous papers outline approaches for countering corrupted compilers, though their

approaches have significant weaknesses. Draper [Draper1984] recommends screening out

maliciously corrupted compilers by writing a “paraphrase” compiler (possibly with a few dummy

statements) or a different compiler executable, compiling once to remove the Trojan horse, and

then compiling a second time to produce a Trojan horse-free compiler. This idea is expanded

upon by McDermott [McDermott1988], who notes that the alternative compiler could be a

reduced-function compiler or one with large amounts of code unrelated to compilation. Lee’s

6

“approach #2” describes most of the basic process of diverse double-compiling, but implies that

the results might not be bit-for-bit identical [Lee2000]. Luzar makes a similar point as Lee,

describing how to rebuild a system from scratch using a different trusted compiler but not noting

that the final result should be bit-for-bit identical if other factors are carefully controlled

[Luzar2003].

None of these papers note that it is possible to produce a result that is bit-for-bit identical to the

original compiler executable. This is a significant advantage of diverse double-compiling (DDC),

because determining if two different executables are “functionally equivalent” is extremely

difficult3, while determining if two executables are bit-for-bit identical is extremely easy. These

previous approaches require each defender to recompile their compiler themselves before using

it; in contrast, DDC can be used as an after-the-fact vetting process by multiple third parties,

without requiring a significant change in compiler delivery or installation processes, and without

requiring that all compiler users receive the compiler source code. All of these previous

approaches simply move the potential vulnerability somewhere else (e.g., to the process using the

“paraphrase” compiler). In contrast, an attacker who wishes to avoid detection by DDC must

corrupt both the original compiler and every application of DDC to that executable, so each

application of DDC can further build confidence that a specific executable corresponds with its

putative source code. Also, none of these papers demonstrate their technique.

Magdsick discusses using different versions of a compiler, and different compiler platforms such

as central processing unit (CPU) and operating system, to check executables. However,

Magdsick presumes that the compiler itself will be the same base compiler (though possibly a

different version). He does note the value of recompiling “everything” to check it

[Magdsick2003]. Anderson notes that cross-compilation does not help if the attack is in the
3Determining if two executables are equivalent is undecidable in general; see section 5.6.1.

7

compiler [Anderson2003]. Mohring argues for the use of recompilation by GCC to check other

components, presuming that the GCC executables themselves in some environments would be

pristine [Mohring2004]. He makes no notice that all GCC executables used might be maliciously

corrupted, or of the importance of diversity in compiler implementation. In his approach different

compiler versions may be used, so outputs would be “similar” but not identical; this leaves the

difficult problem of comparing executables for “exact equivalence” unresolved.

A great deal of effort has been spent to develop proofs of correctness for compilers, either of the

compiler itself and/or its generated results [Dave2003] [Stringer-Calvert1998] [Bellovin1982].

This is quite difficult even for simple languages, though there has been progress.

[Leinenbach2005] discusses progress in verifying a subset C compiler using Isabelle/Higher

Order Logic (HOL). “Compcert” is a compiler that generates PowerPC assembly code from

Clight (a large subset of the C programming language); this compiler is primarily written using

the specification language of the Coq proof assistant, and its correctness (that the generated

assembly code is semantically equivalent to its source program) has been entirely proved within

the Coq proof assistant [Leroy2006] [Blazy2006] [Leroy2008] [Leroy2009]. [Goerigk1997]

requires formal specifications and correspondence proofs, along with double-checking of

resulting transformations with the formal specifications. It does briefly note that “if an

independent (whatever that is) implementation of the specification will generate an equal

bootstrapping result, this fact might perhaps increase confidence. Note however, that, in

particular in the area of security... We want to guarantee the correctness of the generated code,

e.g., preventing criminal attacks” [Goerigk1997, 17]. However, it does not explain what

independence would mean, nor what kind of confidence this equality would provide.

[Goerigk1999] specifically focuses on countering Trojan horses in compilers, through formal

verification techniques, but again this requires having formal specifications and performing

8

formal correspondence proofs. Goerigk recommends “a posteriori code inspection based on

syntactic code comparison” to counter the trusting trust attack, but such inspection is very labor-

intensive on industrial-scale compilers that implement significant optimizations. DDC can be

dramatically strengthened by having formal specifications and proofs of compilers (which can

then be used as the trusted compiler), but DDC does not require them. Indeed, DDC and formal

proofs of compilers can be used in a complementary way: A formally-proved compiler may omit

many useful optimizations (as they can be difficult or time-consuming to prove), but it can still be

used as the DDC “trusted compiler” to gain confidence in another (production-ready) compiler.

Spinellis argues that “Thompson showed us that one cannot trust an application’s security policy

by examining its source code... The recent Xbox attack demonstrated that one cannot trust a

platform’s security policy if the applications running on it cannot be trusted” [Spinellis2003]. It

is worth noting that the literature for change detection (such as [Kim1994] and [Forrest1994]) and

intrusion detection do not easily address this problem, because a compiler is expected to accept

source code and generate object code.

Faigon’s “Constrained Random Testing” process detects compiler defects by creating many

random test programs, compiling them with a compiler-under-test and a reference compiler, and

detecting if running them produces different results [Faigon]. Faigon’s approach may be useful

for finding some compiler errors, but it is extremely unlikely to find maliciously corrupted

compilers.

2.3 Compiler bootstrap test

A common test for errors used by many compilers (including GCC) is the so-called “compiler

bootstrap test”. Goerigk formally describes this test, crediting Niklaus Wirth’s 1986 book

9

Compilerbau as proposing this test for detecting errors in compilers [Goerigk1999]. In this test,

if c(s,b) is the result of compiling source s using compiler executable b, and m is some other

compiler (the “bootstrap” compiler), then4:

If m0 and s are both correct and deterministic, m is correct, m0=c(s,m),
m1=c(s,m0), m2=c(s,m1), all compilations terminate, and if the underlying
hardware works correctly, then m1=m2.

The compiler bootstrap test goes through steps to determine if m1=m2; if not, there is a compiler

error of some kind. This test finds many unintentional errors, which is why it is popular. But

[Goerigk1999] points out that this test is insufficient to make strong claims, in particular, m1 may

equal m2 even if m, m0, or s are not correct. For example, it is trivial to create compiler source

code that passes this test, yet is incorrect, since this test only tests features used in the compiler

itself. More importantly (for purposes of this dissertation), if m is a maliciously corrupted

compiler, a compilation process can pass this test yet produce a maliciously corrupted compiler

m2. Note that the compiler bootstrap test does not consider the possibility of using two different

bootstrap compilers (m and m′) and later comparing their different compiler results (m2 and m2′)

to see if they produce the same (bit-for-bit) result. Therefore, the DDC technique is not the same

as the compiler bootstrap test. However, DDC does have many of the same preconditions as the

compiler bootstrap test. Since the compiler bootstrap test is popular, many DDC preconditions

are already met by typical industrial compilers, making DDC easier to apply to typical industrial

compilers.

2.4 Analyzing software

All programs can be analyzed to find intentionally-inserted or unintentional security issues (aka

vulnerabilities). These techniques can be broadly divided into static analysis (which examines a

4This is theorem 2 (the bootstrap test theorem) of [Goerigk1999]. For clarity, the text has been
modified so that its notation is the same as the notation used in this dissertation.

10

static representation of the program, such as source code or executable, without executing it) and

dynamic analysis (which examines what the program does while it is executing). Formal

methods, which are techniques that use mathematics to prove programs or program models are

correct, can be considered a specific kind of static analysis technique.

Since compilers are programs, these general analysis techniques (both static and dynamic) that

are not specific to compilers can be used on compilers as well.

2.4.1 Static analysis

Static analysis techniques examine programs (their source code, executable, or both) without

executing them. Both programs and humans can perform static analysis.

There are many static analysis programs (aka tools) available; many are focused on identifying

security vulnerabilities in software. The National Institute of Science and Technology (NIST)

Software Assurance Metrics And Tool Evaluation (SAMATE) project (http://samate.nist.gov) is

“developing methods to enable software tool evaluations, measuring the effectiveness of tools

and techniques, and identifying gaps in tools and methods”. SAMATE has collected a long list of

static analysis programs for finding security vulnerabilities by examining source code or

executable code. There are also a number of published reports comparing various static analysis

tools, such as [Zitser2004], [Forristal2005], [Kratkiewicz2005], and [Michaud2006]. A draft

functional specification for source code analysis tools has been developed [Kass2006], proposing

a set of defects that such tools would be required to find and the code complexity that they must

be able to handle while detecting them.

Although [Kass2006] briefly notes that source code analysis tools might happen to find malicious

trap doors, many documents on static analysis focus on finding unintentional errors, not

11

http://samate.nist.gov/

maliciously-implanted vulnerabilities. [Kass2006] specifies a specific set of security-relevant

errors that have been made many times in real programs, and limits the required depth of the

analysis (to make analysis time and reporting manageable). [Chou2006] also notes that in

practice, static analyzers give up on error classes that are too hard to diagnose. For unintentional

vulnerabilities, this is sensible; unintentional errors that have commonly occurred in the past are

likely to recur (so searching for them can be very helpful). Unfortunately, these approaches are

less helpful against an adversary who is intentionally inserting malicious code into a program.

An adversary could intentionally insert one of these common errors, perhaps because they have

high deniability, but ensure that it is so complex that a tool is unlikely to find it. Alternatively, an

adversary could insert code that is an attack but not in the list of patterns the tools search for.

Indeed, an adversary can repeatedly use static analysis tools until he or she has verified that the

malicious code will not be detected later by those tools.

Static analysis tools also exist for analyzing executable files, instead of source code files. Indeed,

[Balakrishnan2005] argues that program analysis should begin with executables instead of source

code, because only the executables are actually run and source code analysis can be misled. To

address this, there are efforts to compute better higher-level constructs from executable code, but

in the general case this is still a difficult research area [Linger2006].

[Wysopal] presents a number of heuristics that can be used to statically detect some application

backdoors in executable files. This includes identifying static variables that “look like”

usernames, passwords, or cryptographic keys, searching for network application programmer

interface (API) calls in applications where they are unexpected, searching for standard date/time

API calls (which may lead to a time bomb), and so on. Unfortunately, many malicious programs

12

will not be detected by such heuristics, and as noted above, attackers can develop malicious

software in ways that specifically avoid detection by the heuristics of such tools.

Many static analysis tools for executables use the same approach as many static analysis tools for

source code: they search for specific programs or program fragments known to be problematic.

The most obvious case are virus-checkers; though it is possible to examine behavior, and some

anti-virus programs are increasingly doing so, historically “anti-virus” programs have a set of

patterns of known viruses, which is constantly updated and used to search various executables

(e.g., in a file or boot record) to see if these patterns are present [Singh2002] [Lapell2006].

However, as noted in Fred Cohen’s initial work on computer viruses [Cohen1985], viruses can

mutate as they propagate, and it is not possible to create a pattern listing all-and-only malicious

programs. [Christodorescu2003] attempts to partially counter this; this paper regards malicious

code detection as an obfuscation-deobfuscation game between malicious code writers and

researchers, and presents an architecture for detecting known malicious patterns in executables

that are hidden by common obfuscation techniques. Even this more robust architecture does not

work against different malicious patterns, nor against different obfuscation techniques.

Of course, even if tools cannot find malicious code, detailed human review can be used at the

source or executable level if the software is critical enough to warrant it. For example, the Open

Berkeley Software Distribution (OpenBSD) operating system source code is regularly and

purposefully examined by a team of people with the explicit intention of finding and fixing

security holes, and as a result has an excellent security record [Payne2002]. The Strategic

Defense Initiative Organization (SDIO), now named the Missile Defense Agency (MDA), even

developed a set of process requirements to counter malicious and unintentional vulnerabilities,

13

emphasizing multi-person knowledge and review along with configuration management and other

safeguards [SDIO1993].

Unfortunately, the trusting trust attack can render human reviews moot if there is no technique to

counter the attack. The trusting trust attack immediately renders examination of the source code

inadequate, because the executable code need not correspond to the source code. Thompson’s

attack subverted the symbolic debugger, so in that case, even human review of the executable

could fail to detect the attack. Thus, human reviews are less convincing unless the trusting trust

attack is itself countered.

Human review also presumes that other humans examining source code or executables will be

able to detect malicious code. In large code bases, this can be a challenge simply due to their size

and complexity. In addition, it is possible for an adversary to create source code that appears to

work correctly, yet actually performs a malevolent action instead. This dissertation uses the term

maliciously misleading code for any source code that is intentionally designed to look benign, yet

creates a vulnerability (including an attack). The topic of maliciously misleading code is further

discussed in section 8.11.

2.4.2 Dynamic analysis

It is also possible to use dynamic techniques in an attempt to detect and/or counter vulnerabilities

by examining the activities of a system, and then halting or examining the system when those

activities are suspicious. A trivial example is execution testing, where a small set of inputs are

provided and the inputs are checked to see if they are correct. However, dynamic analysis is

completely inadequate for countering the trusting trust attack.

14

Traditional execution testing is unlikely to counter the trusting trust attack. Such attacks will only

“trigger” on very specific inputs, as discussed in section 3.2, so even if the executable is

examined in detail, it is extremely unlikely that traditional execution testing will detect this

problem.

Detecting at run-time arbitrary corrupted code in a compiler or the executable code it generates is

very difficult. The fundamental behavior of a corrupted compiler – that it accepts source code

and generates an executable – is no different from a uncorrupted one. Similarly, any malicious

code a compiler inserts into other programs can often be made to behave normally in most cases.

For example, a login program with a trap door (a hidden username and/or password) has the same

general behavior: It decides if a user may log in and what privileges to apply. Indeed, it may act

completely correctly as long as the hidden username and/or password are not used.

In theory, continuous comparison of an executable’s behavior at run-time to its source code could

detect differences between the executable and source code. Unfortunately, this would need to be

done all the time, draining performance. Even worse, tools to do this comparison, given modern

compilers producing highly optimized code, would be far more complex than a compiler, and

would themselves be vulnerable to attack.

Given an extremely broad definition of “system”, the use of software configuration management

tools and change detection tools like Tripwire [Kim1994] could be considered dynamic

techniques for countering malicious software. Both enable detection of changes in the behavior

of a larger system. Certainly a configuration management system could be used to record

changes made to compiler source, and then used to enable reviewers to examine just the

differences. But again, such review presupposes that any vulnerability in an executable could be

revealed by analyzing its source code, a presupposition the trusting trust attack subverts.

15

A broader problem is that once code is running, some programs must be trusted, and at least some

of that code will almost certainly have been generated by a compiler. Any program that attempts

to monitor execution might itself be subverted, just as Thompson subverted the symbolic

debugger, unless there is a technique to prevent it. In any case, it would be better to detect and

counter malicious code before it executed, instead of trying to detect malicious code’s execution

while or after it occurs.

2.5 Diversity for security

There are a number of papers and articles about employing diversity to aid computer security,

though they generally do not discuss or examine how to use diversity to counter Trojan horses

inside compilers themselves or the compilation environment.

Geer et al. strongly argue that a monoculture (an absence of diversity) in computing platforms is a

serious security problem [Geer2003] [Bridis2003], but do not discuss employing compiler

diversity to counter this particular attack.

Forrest et al argue that run-time diversity in general is beneficial for computer security. In

particular, their paper discusses techniques to vary final executables by “randomized”

transformations affecting compilation, loading, and/or execution. Their goal was to automatically

change the executable (as seen at run-time) in some random ways sufficient to make it more

difficult to attack. The paper provides a set of examples, including adding/deleting nonfunctional

code, reordering code, and varying memory layout. They demonstrated the concept through a

compiler that randomized the amount of memory allocated on a stack frame, and showed that the

approach foiled a simple buffer overflow attack [Forrest1997]. Again, they do not attempt to

counter corrupted compilers.

16

John Knight and Nancy Leveson performed an experiment with “N-version programming” and

showed that, in their experiment, “the assumption of independence of errors that is fundamental

to some analyses of N-version programming does not hold” [Knight1986] [Knight1990]. As will

be explained in section 4.7, this result does not invalidate DDC.

2.6 Subversion of software is a real problem

Subversion of software is not just a theoretical possibility; it is a current problem. One book on

computer crime lists various kinds of software subversion as attack methods (e.g., trap doors,

Trojan horses, viruses, worms, salamis, and logic bombs) [Icove1995, 57-58]. CERT5 has

published a set of case studies of “persons who used programming techniques to commit

malicious acts against their organizations” [Cappelli2008]. Examples of specific software

subversion or subversion attempts include:

• Michael Lauffenburger inserted a logic bomb into a program at defense contractor

General Dynamics, his employer. The bomb would have deleted vital rocket project data

in 1991, including much that was unrecoverable, but another employee stumbled onto it

before it was triggered [AP1991] [Hoffman1991].

• Timothy Lloyd planted a 6-line logic bomb into the systems of Omega Engineering, his

employer, that went off on July 31, 1996. This erased all of the company’s contracts and

proprietary software used by their manufacturing tools, resulting in an estimated $12

million in damages, 80 people permanently losing their jobs, and the loss of their

competitive edge in the electronics market space. Plant manager Jim Ferguson stated

flatly, “We will never recover”. On February 26, 2002, a judge sentenced Lloyd to 41

months in prison, three years of probation, and ordered him to pay more than $2 million

in damages to Omega [Ulsh2000] [Gardian].
5CERT is not an acronym.

17

• Roger Duronio worked at UBS PaineWebber’s offices in Weehawken, N.J., and was with

the company for two years as a system administrator. Apparently dissatisfied with his

pay, he installed a logic bomb to detonate on March 4, 2002, and resigned from the

company. When the logic bomb went off, it caused over 1,000 of their 1,500 networked

computers to begin deleting files. This cost UBS PaineWebber more than $3 million to

assess and repair the damage, plus an undetermined amount from lost business. Duronio

was sentenced to 97 months in federal prison (the maximum per the U.S. sentencing

guidelines), and ordered to make $3.1 million in restitution [DoJ2006] [Gaudin2006b].

The attack was only a few lines of C code, which examined the time to see if it was the

detonation time, and then (if so) executed a shell command to erase everything

[Gaudin2006a].

• An unnamed developer inside Borland inserted a back door into the Borland/Inprise

Interbase Structured Query Language (SQL) database server around 1994. This was a

“superuser” account (“politically”) with a known password (“correct”), which could not

be “changed using normal operational commands, nor [deleted] from existing vulnerable

servers”. Versions released to the public from 1994 through 2001 included this back

door. Originally Interbase was a proprietary program sold by Borland/Inprise. However,

it was released as open source software6 in July 2000, and less than six months later the

open source software developers discovered the vulnerability [Havrilla2001a]

[Havrilla2001b]. The Firebird project, an alternate open source software package based

on the same Interbase code, was also affected. Jim Starkey, who launched InterBase but

6Open source software is, briefly, software where users have the right to use the software for any
purpose, review it, modify it, and redistribute it (modified or not) without requiring royalty payments
[Wheeler2007]. The Open Source Definition [OSI2006] and the Free Software Definition [FSF2009] have
more formal definitions for this term or the related term “Free software”. There is quantitative data
showing that, in many cases, using open source software/Free software (abbreviated as OSS/FS, FLOSS, or
FOSS) is a reasonable or even superior approach to using their proprietary competition according to various
measures [Wheeler2007]. In almost all cases, it is commercial software [Wheeler2009f].

18

left in 1991 before the back door was added to the software in 1994, stated that he

believed that this back door was not malicious, but simply added to enable one part of the

database software to communicate with another part [Shankland2001]. However, this

code had the hallmarks of many malicious back doors: It added a special account that was

(1) undocumented, (2) cannot be changed, and (3) gave complete control to the requester.

• An unknown attacker attempted to insert a malicious back door in the Linux kernel in

2003. The two new lines were crafted to appear legitimate, by using an “=” where a

“==” would be expected. The configuration management tools immediately identified a

discrepancy, and examination of the changes by the Linux developers quickly determined

that it was an attempted attack [Miller2003] [Andrews2003].

More recently, in 2009 the Win32.Induc virus was discovered in the wild. This virus attacks

Delphi compiler installations, modifying the compiler itself. Once the compiler is infected, all

programs compiled by that compiler will be infected [Mills2009] [Feng2009]. Thus, countering

subverted compilers is no longer an academic exercise; attacks on compilers have already

occurred.

Many have noted insertion of malicious code into software as an important risk:

• Many have noted subversion of software as an issue in electronic voting machines

[Saltman1988] [Kohno2004] [Feldman2006] [Barr2007].

• The U.S. Department of Defense (DoD) established a “software assurance initiative” in

2003 to examine software assurance issues in defense software, including how to counter

intentionally inserted malicious code [Komaroff2005]. In 2004, the U.S. General

Accounting Office (GAO) criticized the DoD, claiming that the DoD “policies do not

fully address the risk of using foreign suppliers to develop weapon system software...

19

policies [fail to focus] on insider threats, such as the insertion of malicious code by

software developers...” [GAO2004]. The U.S. Committee on National Security Systems

(CNSS) defines Software Assurance (SwA) as “the level of confidence that software is

free from vulnerabilities, either intentionally designed into the software or accidentally

inserted at anytime during its lifecycle, and that the software functions in the intended

manner” [CNSS2006]. Note that intentionally-created vulnerabilities inserting during

software development are specifically included in this definition.

• The President’s Information Technology Advisory Committee (PITAC) found that

“Vulnerabilities in software that are introduced by mistake or poor practices are a serious

problem today. In the future, the Nation may face an even more challenging problem as

adversaries – both foreign and domestic – become increasingly sophisticated in their

ability to insert malicious code into critical software” [PITAC2005, 9]. The U.S.

National Strategy to Secure Cyberspace reported that a “spectrum of malicious actors can

and do conduct attacks against our critical information infrastructures. Of primary

concern is the threat of organized cyber attacks capable of causing debilitating disruption

to our Nation’s critical infrastructures, economy, or national security.... [and could

subvert] our infrastructure with back doors and other means of access.” [PCIB2003,6]

• In 2003, China's State Council announced a plan requiring all government ministries to

buy only locally produced software when upgrading, and to increase use of open source

software, in part due to concerns over “data spyholes installed by foreign powers” in

software they procured for government use [CNETAsia2003].

In short, as software becomes more pervasive, subversion of it becomes ever more tempting to

powerful individuals and institutions. Attackers can even buy legitimate software companies, or

20

build them up, to widely disseminate quality products at a low price... but with “a ticking time

bomb inside” [Schwartau1994, 304-305].

Not all articles about subversion specifically note the trusting trust attack as an issue, but as noted

earlier, for source code evaluations to be strongly credible, there must be a way to justify that the

source code being examined accurately represents what is being executed—yet the trusting trust

attack subverts that very claim. Internet Security System’s David Maynor argues that the risk of

attacks on compilation processes is increasing [Maynor2004] [Maynor2005]; Karger and Schell

noted that the trusting trust attack was still a problem in 2000 [Karger2000], and some

technologists doubt that computer-based systems can ever be secure because of the existence of

this attack [Gauis2000]. Anderson et al. argue that the general risk of subversion is increasing

[Anderson2004]. Williams argues that the risk from malicious developers should be taken

seriously, and describes a variety of techniques that malicious programmers can use to insert and

hide attacks in an enterprise Java application [Williams2009].

2.7 Previous DDC paper

Initial results from DDC research were published by the Annual Computer Security Applications

Conference (ACSAC) in [Wheeler2005]. This paper was well-received, for example, Bruce

Schneier wrote a glowing review and summary of the paper [Schneier2006], and the Spring 2006

class “Secure Software Engineering Seminar” of Dr. James Walden (Northern Kentucky

University) included it in its required reading list.

This dissertation includes the results of [Wheeler2005] and refines it further:

• The definition of DDC is generalized to cover the case where the compiler is not self-

regenerating. Instead, a compiler-under-test may have been generated using a different

21

“parent” compiler. Self-regeneration (where the putative source code of the parent and

compiler-under-test are the same) is now a special case.

• A formal proof of DDC is provided, including a formalization of DDC assumptions. The

earlier paper includes only an informal justification. The proof covers cases where the

environments are different, including the effect of different text representation systems.

• A demonstration of DDC with a known maliciously corrupted compiler is shown. As

expected, DDC detects this case.

• A demonstration of DDC with an industrial-strength compiler (GCC) is shown.

• The discussion on the application of DDC is extended to cover additional challenges,

including its potential application to hardware.

22

3 Description of threat

Thompson describes how to perform the trusting trust attack, but there are some important

characteristics of the attack that are not immediately obvious from his presentation. This chapter

examines the threat in more detail and introduces terminology to describe the threat. This

terminology will be used later to explain how the threat is countered. For a more detailed model

of this threat, see [Goerigk2000] and [Goerigk2002] which provide a formal model of the trusting

trust attack.

The following sections describe what might motivate an attacker to actually perform such an

attack, and the mechanisms an attacker uses that make this attack work (triggers, payloads, and

non-discovery).

3.1 Attacker motivation

Understanding any potential threat involves determining the benefits to an attacker of an attack,

and comparing them to the attacker’s risks, costs, and difficulties. Although this trusting trust

attack may seem exotic, its large benefits may outweigh its costs to some attackers.

The potential benefits are immense to a malicious attacker. A successful attacker can completely

control all systems that are compiled by that executable and that executable’s descendants, e.g.,

they can have a known login (e.g., a “backdoor password”) to gain unlimited privileges on entire

23

classes of systems. Since detailed source code reviews will not find the attack, even defenders

who have highly valuable resources and check all source code are vulnerable to this attack.

For a widely-used compiler, or one used to compile a widely-used program or operating system,

this attack could result in global control. Control over banking systems, financial markets,

militaries, or governments could be gained with a single attack. An attacker could possibly

acquire enormous funds (by manipulating the entire financial system), acquire or change

extremely sensitive information, or disable a nation’s critical infrastructure on command.

An attacker can perform the attack against multiple compilers as well. Once control is gained

over all systems that use one compiler, trust relationships and network interconnections could be

exploited to ease attacks against other compiler executables. This would be especially true of a

patient and careful attacker; once a compiler is subverted, it is likely to stay subverted for a long

time, giving an attacker time to use it to launch further attacks.

An attacker (either an individual or an organization) who subverted a few of the most widely used

compilers of the most widely-used operating systems could effectively control, directly or

indirectly, almost every computer in existence.

The attack requires knowledge about compilers, effort to create the attack, and access (gained

somehow) to the compiler executable, but all are achievable. Compiler construction techniques

are standard Computer Science course material. The attack requires the insertion of relatively

small amounts of code, so the attack can be developed by a single knowledgeable person. Access

rights to change the relevant compiler executables are usually harder to acquire, but there are

clearly some who have such privileges already, and a determined attacker may be able to acquire

24

such privileges through a variety of means (including network attack, social engineering, physical

attack, bribery, and betrayal).

The amount of power this attack offers is great, so it is easy to imagine a single person deciding

to perform this attack for their own ends. Individuals entrusted with compiler development might

succumb to the temptation if they believed they could not be caught. Today there are many virus

writers, showing that many people are willing to write malicious code even without gaining the

control this attack can provide.

It is true that there are other devastating attacks that an attacker could perform in the current

environment. Many users routinely download and install massive executables, including large

patches and updates, that could include malicious code, and few users routinely examine

executable machine code or byte code. Few users examine source code even when they can

receive it, and in many cases users are not legally allowed to examine the source code. As a

result, here are some other potentially-devastating attacks that could be performed besides the

trusting trust attack:

• An attacker can find unintentional vulnerabilities in existing executables, and then write

code to exploit them.

• An attacker could modify or replace a widely-used/important executable during or after

its compilation, but before its release by its supplier. For example, an attacker might be

able to do this by bribing or extorting a key person in the supplying organization, by

becoming a key person, or by subverting the supplier’s infrastructure.

• Even when users only accept source code and compile the source code themselves, an

attacker could insert an intentional attack in the source code of a widely-used/important

program in the hope that no one will find it later.

25

• An attacker with a long-range plan could develop a useful program specifically so that

they can embed or eventually embed an attack (using the two attacks previously noted).

In such cases the attacker might become a trusted (but not trustworthy) supplier.

However, there is a fundamental difference with the attacks listed above and the trusting trust

attack: there are known detection techniques for these attacks:

• Static and dynamic analysis can detect many unintentional vulnerabilities, because they

tend to be caused by common implementation mistakes. In addition, software designs

can reduce the damage from such mistakes, and some implementation languages can

completely eliminate certain kinds of mistakes. Many documents discuss how to develop

secure software for those trying to do so, including [Wheeler2003s] and [NDIA2008].

• If an attacker swaps the expected executable with a malicious executable, without using a

trusting trust attack, the attack can be discovered by recompiling the source code to see if

it produces the same results (presuming a deterministic compiler is used). Even if it is

not discovered, recompilation of the next version of the executable will often eliminate

the attack if it is not a “trusting trust” attack.

• If an attacker inserts an intentional attack or vulnerability in the source code, this can be

revealed by examining the source code (see section 8.11 for a discussion on attacks which

are intentionally difficult to find in source code).

• If the user does not fully trust the supplier to perform such tests, then these tests could be

performed by the user (if the user has the necessary information), or by a third party who

is trusted by the user and supplier (if the supplier is unwilling to give necessary

information to the user, but are willing to give it to such a third party). If the supplier is

unwilling to provide the necessary information to either the user or a third party, the user

26

could reasonably conclude that using such suppliers is a higher risk than using suppliers

who are willing to provide this information, and then take steps based on that conclusion.

In contrast, there has been no known effective detection technique for the trusting trust attack.

Thus, even if all of these well-known detection techniques were used, users would still be

vulnerable to the trusting trust attack. What is more, the subversion can persist indefinitely; the

longer it remains undetected, the more difficult it will be to reliably identify the perpetrator even

if it is detected.

Given such extraordinarily large benefits to an attacker, and the lack of an effective detection

mechanism, a highly resourced organization (such as a government) might decide to undertake it.

Such an organization could supply hundreds of experts, working together full-time to deploy

attacks over a period of decades. Defending against this scale of attack is far beyond the

defensive abilities of most companies and non-profit organizations who develop and maintain

popular compilers.

In short, this is an attack that can yield complete control over a vast number of systems, even

those systems whose defenders perform independent source code analysis (e.g., those who have

especially high-value assets), so it is worth defending against.

3.2 Triggers, payloads, and non-discovery

The trusting trust attack depends on three things: triggers, payloads, and non-discovery. For

purposes of this dissertation, a “trigger” is a condition determined by an attacker in which a

malicious event is to occur (e.g., when malicious code is to be inserted into a program). A

“payload” is the code that actually performs the malicious event (e.g., the inserted malicious code

and the code that causes its insertion). The attack also depends on non-discovery by its victims,

27

that is, it depends on victims not detecting the attack (before, during, or after it has been

triggered)7.

For this attack to be valuable, there must be at least two triggers that can occur during

compilation: at least one to cause a malicious attack directly of value to the attacker (e.g.,

detecting compilation of a “login” program so that a Trojan horse can be inserted into it), and one

to propagate attacks into future versions of the compiler executable.

If a trigger is activated when the attacker does not intend the trigger to be activated, the

probability of detection increases. However, if a trigger is not activated when the attacker intends

it to be activated, then that particular attack will be disabled. If all the attacks by the compiler

against itself are disabled, then the attack will no longer propagate; once the compiler is

recompiled, the attacks will disappear. Similarly, if a payload requires a situation that (through

the process of change) disappears, then the payload will no longer be effective (and its failure

may reveal the attack).

In this dissertation, “fragility” is the susceptibility of the trusting trust attack to failure, i.e., that a

trigger will activate when the attacker did not wish it to (risking a revelation of the attack), fail to

trigger when the attacker would wish it to, or that the payload will fail to work as intended by the

attacker. Fragility is unfortunately less helpful to the defender than it might first appear. An

attacker can counter fragility by simply incorporating many narrowly-defined triggers and

payloads. Even if a change causes one trigger to fail, another trigger may still fire. By using

multiple triggers and payloads, an attacker can attack multiple points in the compiler and attack

7Even if the attack is eventually detected, if the attacker can be assured that the attack will not be
detected for a very long time, the attacker may still find it valuable. The attacker could, for example, use
this lengthy time to successfully perform other attacks and subvert an infrastructure in many other ways.
Also, if the original attack is not detected for a long time, it is often increasingly difficult to determine the
identity of the attacker or at least an important intermediary. For a summary of techniques that can resolve
this “attribution” problem, see [Wheeler2003t].

28

different subsystems as final targets (e.g., the login system, the networking interface, and so on).

Thus, even if some attacks fail over time, there may be enough vulnerabilities in the resulting

system to allow attackers to re-enter and re-insert new triggers and payloads into a malicious

compiler. Even if a compiler misbehaves from malfunctioning malware, the results could appear

to be a mysterious compiler defect; if programmers “code around” the problem, the attack will

stay undetected.

Since attackers do not want their malicious code to be discovered, they may limit the number of

triggers/payloads they insert and the number of attacked compilers. In particular, attackers may

tend to attack only “important” compilers (e.g., compilers that are widely-used or used for high-

asset projects), since each compiler they attack (initially or to add new triggers and payloads)

increases the risk of discovery. However, since these attacks can allow an attacker to deeply

penetrate systems generated with the compiler, maliciously corrupted compilers make it easier for

an attacker to re-enter a previously penetrated development environment to refresh an executable

with new triggers and payloads. Thus, once a compiler has been subverted, it may be difficult to

undo the damage without a process for ensuring that there are no attacks left.

The text above might give the impression that only the compiler itself, as usually interpreted, can

influence results (or how they are run), yet this is obviously not true. Assemblers and loaders are

excellent places to place a trigger (the popular GCC C compiler actually generates assembly

language as text and then invokes an assembler). An attacker could place the trigger mechanism

in the compiler’s supporting infrastructure such as the operating system kernel, libraries, or

privileged programs.

29

4 Informal description of Diverse Double-Compiling
(DDC)

The idea of diverse double-compiling (DDC) was first created and posted by Henry Spencer in

1998 [Spencer1998] in a very short posting. It was inspired by McKeeman et al’s exercise for

detecting compiler defects [McKeeman1970] [Spencer2005]. Since this time, this idea has been

posted in several places, typically with very short descriptions [Mohring2004] [Libra2004]

[Buck2004]. This chapter describes the graphical notation for describing DDC that is used in this

dissertation. This is followed by a brief informal description of DDC, an informal discussion of

its assumptions, a clarification that DDC does not require that arbitrary different compilers

produce the same executable output given the same input, and a discussion of a common special

case: Self-parenting compilers. This chapter closes by answering some questions, including:

Why not always use the trusted compiler, and why is this different from N-version programming?

4.1 Terminology and notation

This dissertation focuses on compilers. For purposes of this dissertation, compilers execute in

some environment, receiving as input source code as well as other input from the environment,

and producing a result termed an executable. A compiler is, itself, an executable.

Figure 1 illustrates the notation used in this dissertation. A shaded box shows a compilation step,

which executes a compiler (input from the top), processing source code (input from the left), and

uses other input (input from the right), all to produce an executable (output exiting down). To

30

distinguish the different steps, each compilation step will be given a unique name (shown here as

“n”). Source code that is purported to be the source code for the executable Y is notated as sY.

The result of a compilation step using compiler X, source code sY, other input I (e.g., run-time

libraries, random number results, and thread schedule), and environment E is an executable,

notated here as compile(sY, cX, I, E). Where the environment can be determined from context

(e.g., it is all the same) that parameter is omitted; where that is true and any other input (if

relevant) can be inferred, both are omitted yielding the notation compile(sY, cX). In some cases,

this will be further abbreviated as c(sY, cX).

The widely-used “T-diagram” (aka “Bratman”) notation is not used in this dissertation.

T-diagrams were originally created by Bratman [Bratman1961], and later greatly extended and

formalized by Earley and Sturgis [Earley1970]. T-diagrams can be very helpful when discussing

certain kinds of bootstrapping approaches. However, they are not a universally perfect notation,

and this dissertation intentionally uses a different notation because the weaknesses of T-diagrams

make DDC unnecessarily difficult to describe:

31

Figure 1: Illustration of graphical notation

Other
input In

Compilation result:
compile(sY,cX,I,E)

Compiler cX

Source
code sY

• T-diagrams combining multiple compilation steps can be very confusing

[Mogensen2007, 219]. This is a serious problem when representing DDC, since DDC is

fundamentally about multiple compilation steps.

• T-diagrams quickly grow in width when multiple steps are involved; since paper is

usually taller than it is wide, this can make complex situations more difficult to represent

on the printed page. Again, applying DDC involves multiple steps.

• T-diagrams do not handle multiple sub-components well (e.g., a library embedded in a

compiler). The notation can be “fudged” to do this (see [Early1970, 609]) but the

resulting graphic is excessively complex. Again, compilation of real compilers using

DDC often involves handling multiple sub-components, making this weakness more

important.

• T-diagrams create unnecessary clutter when applied to DDC. In a T-diagram, every

compiler source code and compiler executable, as well as their executions, are

represented by a T. This creates unnecessary visual clutter, making it difficult to see what

is executed and what is not.

Niklaus Wirth abandoned T-diagrams in his 1996 book on compilers, without even mentioning

them [Wirth1996], so clearly T-diagrams are not absolutely required when discussing compiler

bootstrapping. The notation of this dissertation uses a single, simple box for each execution of a

compiler, instead of a trio of T-shaped figures. As DDC application becomes complex, this

simplification matters.

4.2 Informal description of DDC

In brief, to perform DDC, source code must be compiled twice. First, use a separate “trusted”

compiler to compile the source code of the “parent” of the compiler-under-test. Then, run that

32

resulting executable to compile the purported source code of the compiler-under-test. Then,

check if the final result is exactly identical to the original compiler executable (e.g., bit-for-bit

equality) using some trusted means. If it is, then the purported source code and executable of the

compiler-under-test correspond, given some assumptions to be discussed later.

Figure 2 presents an informal, simplified graphical representation of DDC, along with the

claimed origin of the compiler-under-test (this claimed original process can be re-executed as a

check for self-regeneration). The dashed line labeled “compare” is a comparison for exact

equality. This figure uses the following symbols:

• cA: Executable of the compiler-under-test, which may be corrupt (maliciously corrupted

compilers are by definition corrupt).

• sA: Purported source code of compiler cA. Our goal is determine if cA and sA correspond.

• cP: Executable of the compiler that is purported to have generated cA (it is the purported

“parent” of cA).

33

Figure 2: Informal graphical representation of DDC

1sP

2

stage1

sA

cT (Trusted Compiler)
DDC Process Claimed Origin/Regeneration

o1sP

o2

cP

sA

cA

cGP

stage2

• sP: Purported source code of parent cP. Often a variant/older version of sA.

• cT: Executable of a “trusted” compiler, which must be able to compile sP.. The exact

meaning of “trusted” will be explained later.

• 1, 2, o1, o2: Stage identifiers. Each stage executes a compiler.

• stage1, stage2: The outputs of the DDC stages. Stage1 is a function of cT and sP, and can

be represented as c(sP, cT) where “c” means “compile”. Similarly, stage2 can be

represented as c(sA, stage1) or c(sA, c(sP, cT)).

The right-hand-side shows the process that purportedly generated the compiler-under-test

executable cA in the first place. The right-hand-side shows the DDC process. The process graphs

are very similar, so it should not be surprising that the results should be identical. This

dissertation formally proves this (given certain conditions) and demonstrates that this actually

occurs with real-world compilers.

Before performing DDC itself, it is wise to perform a regeneration check, which checks to see if

we can regenerate cA using exactly the same process that was supposedly used to create it

originally8. Since cA was supposed to have been created this way in the first place, regeneration

should produce the same result. In practice, the author has found that this is often not the case.

For example, many organizations’ configuration control systems do not record all the information

necessary to accurately regenerate a compiled executable, and the ability to perform regeneration

is necessary for the DDC process. In such cases, regeneration acts like the control of an

experiment; it detects when we do not have proper control over all the relevant inputs or

8DDC will not create an identical executable unless the regeneration check would succeed, and so from
that perspective the regeneration check is mandatory. Performing the regeneration check has not been
made mandatory, because there may be other evidence that it would succeed, but in most cases it is strongly
recommended.

34

environment. Corrupted compilers can also pass the regeneration test, so by itself the

regeneration test is not sufficient to reliably detect corrupted compilers.

We then perform DDC by compiling twice. These two compilation steps are the origin of this

technique’s name: we compile twice, the first time using a different (diverse) trusted compiler.

All compilation stages (stage 1 and stage 2, as well as the regeneration test) could be performed

on the same or on different environments. Libraries can be handled in DDC by considering them

as part of the compiler (if they are executed in that stage) or part of the source code (if they are

used as input data but not executed in that stage).

Note that the DDC technique uses a separate trusted compiler as a check on the compiler-under-

test. The trusting trust attack assumes that all later generations of the compiler will be

descendants of a corrupted compiler; using a completely different second compiler can invalidate

this assumption. The trusted compiler and its environment may be malicious, as long as that does

not impact their result during DDC, and they may be very slow.

The formalized DDC model, along with formalized assumptions and its proof, are presented in

chapter 5.

4.3 Informal assumptions

All approaches have assumptions. These will be formally and completely stated later, but a brief

statement of some key assumptions should help in understanding the approach:

• DDC must be performed only by trusted programs and processes, including a trusted

compiler cT, trusted environment(s) to run DDC, a trusted comparer, and trusted

processes and tools to acquire the compiler-under-test cA and the source code sP and sA.

35

In this dissertation, something is “trusted” if we have justified confidence that it does not

have triggers and payloads that would affect the results of DDC. A trusted program or

process may have triggers and payloads, as long as they do not affect the result. A trusted

program or process may have defects, though as shown later, any defects that affect its

result in DDC are likely to be detected. Methods to increase the level of confidence are

discussed in chapter 6.

• Compiler cT must have the same semantics for the same constructs as required by sP. For

example, a Java(TM) compiler cannot be used directly as cT if sP is written in the C

language. If sP uses any nonstandard language extensions, or depends on a construct not

defined by a published language specification, then cT must implement them in the way

required by sP. Any defect in cT can also cause problems if it affects compiling sP

(otherwise it is irrelevant for DDC).

• The compiler defined by sP should be deterministic given its inputs. That is, once

compiled, and then executed multiple times given the same inputs, it should produce

exactly the same outputs each time. If the compiler described by sP is non-deterministic,

in some cases it could be handled by running the process multiple times, but it is often

easier to control enough inputs to make the compiler deterministic. Note that the

regeneration process is helpful in detecting undesired non-determinism.

DDC does not determine if the source code is free of malicious code; DDC can only show if

source code corresponds to a given executable. If the goal is to show that the compiler cA is not

malicious, then the source code (sA and sP) must also be reviewed to determine that the source

code is not malicious. This is still an important change—it is typically far easier to review source

code than to review executables. In some cases sA and sP are extremely similar; in such cases they

36

can be simultaneously reviewed by reviewing one and then reviewing their differences. There is

also an important special case—when sP=sA—that is described in section 4.5.

But first, we must clarify that DDC does not require something that is unlikely.

4.4 DDC does not require that different compilers produce
identical executables

DDC does not require that arbitrary different compilers produce the same executable output, even

given the same input. Indeed, this would be extremely unlikely for source code the size of typical

compilers. Compiler executables cA, cP, and cT might even run on or generate code for different

CPU architectures, making identical results extremely unlikely.

Instead, DDC runs a different executable; under certain conditions, this must produce the “same”

result. This is perhaps best explained by example. Imagine two properly-working C compilers,

both of which are given this source code to print the result of calculating 2+2:

#include <stdio.h>
main() {

printf("%d\n", 2+2);
}

The executables produced by the two compilers are almost certainly different, but running these

two programs on their respective environments must produce the same result for this line (once

converted into the same text encoding format). Obviously, this depends on them implementing

the same language (for the purposes of the given Source).

The conditions where this occurs are defined more formally in chapter 5. In particular, see

section 5.7.9, where this is examined in more detail.

37

4.5 Special case: Self-parenting compiler

An important special case is when sP=sA, that is, when the putative source code of the parent

compiler is the same as the putative source code of the compiler-under-test. There are often good

reasons for releasing executables generated this way. For example, a compiler typically includes

many optimization operations; each new version of a compiler may add new or improved

optimization operations. By releasing a self-parented compiler (a compiler generated by setting

sP=sA and compiling twice), the supplier would release a compiler executable that uses the latest

versions of those optimizations, giving the compiler itself maximum performance. Many existing

compilers (including as GCC) use the compiler bootstrap test (essentially the self-regeneration

check) to test themselves, so a compiler’s build and test process may already include an

automated way to create a self-parenting compiler. Figure 3 shows how figure 2 simplifies in this

case.

Because this is a common case, the older paper [Wheeler2005] only considered this case. In

contrast, this dissertation considers the more general case, subsuming self-parenting as a special

case.

Having a self-parenting compiler can simplify the application of DDC. As discussed in more

detail below, DDC only shows that source code and executable correspond, so review of compiler

source code is still required if the goal is to show that there is no malicious code in an executable.

In the general case, both sA and sP must be reviewed. Since sA=sP in a self-parented compiler,

reviewing both sA and sP can be done by reviewing just sA, simplifying the use of DDC. Also,

when a compiler is its own parent, a simplified regeneration check may be used to detect many

problems without performing the complete regeneration test. This test, which can be termed

38

“self-regeneration”, simply uses cA to compile its putative source code sA; the regeneration is

successful if the generated executable is the same as the original cA.

It is still useful to be able to handle the general case. Compiler cP need not be a radically different

compiler; it might simply be an older version of cA, differ only in its use of different compilation

flags, or differ only in that it embeds a different version of a library executable. Nevertheless, if

cP and cA are different, the general form of DDC must be used. Also, it is possible to have a

“loop” of compilers that mutually depend on each other for self-regeneration (e.g., a Java

compiler written in C and a C compiler written in Java might be generated using each other). In

this case, the more general form of DDC is needed to break the loop.

39

Figure 3: Informal graphical representation of DDC for self-regeneration case

1sA

2

stage1

cT (Trusted Compiler)
DDC Process Claimed Origin/Regeneration

o1sA

cA

cGP

stage2

o2

cP

4.6 Why not always use the trusted compiler?

DDC uses a second “trusted” compiler cT, which is trusted in the sense that we have a justified

confidence that cT does not have triggers or payloads that affect recompiling sP and sA (see section

4.3). We can now answer an obvious question: Why not always use the trusted compiler cT?

First, there are many reasons compiler cT might not be suitable for general use. For example,

compiler cT may be slow, produce slow code, generate code for a different CPU architecture than

desired, be costly, or have undesirable software license restrictions. It may lack many useful

functions necessary for general-purpose use (in DDC, trusted compiler cT only needs to be able to

compile sP). It is possible that the only purpose of the trusted compiler is to operate as a trusted

checker for the more widely-used compiler, in fact, there are good reasons to do so. It is much

easier to verify (and possibly formally prove) a simple compiler that has limited functionality and

few optimizations; such compilers might not be suitable for general production use, but would be

ideal as trusted compilers used to check production compilers. The trusted compiler could even

be a “secret” compiler that is never publicly released (as source, executable, or a service); an

attacker would find it extremely difficult to avoid detection by DDC if such a trusted compiler

were used.

Second, using a different trusted compiler cT greatly increases the confidence that the compiler

executable cA corresponds with source code sA. When a second compiler cT is used as part of

DDC, an attacker must subvert multiple executables and executable-generation processes to

perform the “trusting trust” attack without detection. It is true that the trusted compiler cT could

be used as a “trusted bootstrap” compiler that would always be used to generate each new version

of cA. This could be done even if cT is not suitable for general use. However, if we always

generate updated versions of cA this way, and never use DDC, we have merely moved the trusting

40

trust attack to a different location: We must now perfectly protect cT and the bootstrap process

used to create each new version of cA. Should the protection of cT ever fail, an attacker might

change cT into a maliciously corrupted compiler cT´, resulting in the potential corruption of future

versions of cA. By using DDC with a different trusted compiler cT, cT is used as a separate check,

requiring an attacker to subvert two different compilers and compiler-generation processes to

avoid detection. Indeed, DDC could be performed multiple times using different compilers as cT

and/or different environments, requiring an attacker to subvert all of the DDC processes to avoid

detection. Using DDC with a different compiler cT greatly increases the confidence that cA

exactly corresponds with sA; using DDC multiple times can increase that confidence still further.

4.7 Why is DDC different from N-version programming?

N-version programming “has been proposed as a method of incorporating fault tolerance into

software. Multiple versions of a program (i.e., ‘N’) are prepared and executed in parallel. Their

outputs are collected and examined by a voter, and, if they are not identical, it is assumed that the

majority is correct. This method [assumes] that programs that have been developed

independently will fail independently” [Knight1986].

John Knight and Nancy Leveson performed an experiment with N-version programming and

showed that, in their experiment, “the assumption of independence of errors that is fundamental

to some analyses of N-version programming does not hold” [Knight1986] [Knight1990]. Instead,

they found that if one program has a failure when processing a particular input, there was an

increased likelihood of failure (compared to random failure) for another program with the same

input, given that both programs were written to the same specification. This is an important

result. It is not hard to see why this might be true; for example, if certain areas of the

specification are unusually complex, two different programmers might both fail to meet it.

41

However, this result does not invalidate DDC, because the circumstances in DDC are very

different from this and similar experiments.

In the Knight and Leveson work, N different programs were developed by different developers

attempting to implement the same specification. In contrast, the purpose of applying DDC is to

detect when two different compiler executables have been developed to implement different

specifications, that is, when one program is written to attempt to compile source code accurately,

while another program is written to produce corrupted results in certain cases. However:

• These changes are extremely unlikely to happen unintentionally (and in the same way) in

both the trusted compiler and the original process used to create the compiler-under-test.

Creating a corrupting compiler that is self-perpetuating and selectively corrupts other

programs requires clever programming [Thompson1984] and significantly changes the

compiler executable (for an example, see the differences shown in section A.5).

• These changes are extremely unlikely to happen intentionally in the trusted compiler and

DDC process in general. This is by definition of the term “trusted”—we have justified

confidence that the DDC process (including the trusted compiler) is unlikely to have

triggers or payloads that affect DDC results.

• Since the kind of differences that motivate DDC are extremely unlikely to occur

unintentionally or intentionally, the entire scenario is extremely unlikely.

Also, in the Knight and Leveson experiment, the issue was to determine if the different programs

would produce identical results across all permitted inputs to the different programs. Their

experiment simulated use of the N programs using one million test inputs, corresponding to about

twenty years of operational use “if the program is executed once per second and unusual events

occur every ten minutes”. In contrast, in DDC, there is only one relevant input: the source code

42

pair sP and sA. Granted, these inputs will have a complex internal structure, but these are the only

inputs that matter, as compared to the wide range of possible inputs a compiler might accept.

Thus, in DDC we do not have the situation where there is a wide variety of potential test inputs;

we have only one pair of inputs, and they are the only ones that matter.

There is a special case where the Knight and Leveson results do directly apply to DDC. This is

when the original compiler and trusted compiler both fail to correctly compile the source code (sP

and sA), and this failure happens to produce the same results. DDC will not detect that both

compilers are performing incorrectly in the same way. The Knight and Leveson paper shows that

such program failures are not completely statistically independent, and thus this kind of failure is

somewhat more likely than an independence model would predict. However, there are several

reasons to believe that this special case is rare for mature compilers. First, mature compilers

typically pass a large test suite, reducing the risk of such defects. Second, compilers are usually

part of their own test suite, reducing the likelihood that a compiler will fail to correctly compile

itself. Third, section 7.1.3 demonstrates that even when a compiler fails to correctly compile

itself, DDC may still detect it. But all of this is beside the point. Since the purpose of applying

DDC is to detect intentional self-perpetuating attacks, and not to prove total correctness, this

special case does not invalidate the use of DDC to detect and counter the “trusting trust” attack.

Thus, the Knight and Leveson results do not invalidate DDC for the purpose of detecting and

countering the “trusting trust” attack.

4.8 DDC works with randomly-corrupting compilers

DDC works even if an ancestor of cA randomly corrupts its results. If the compiler-under-test was

not corrupted, DDC will correctly report this; otherwise, DDC will expose the corruption.

43

5 Formal proof

This chapter presents a formal proof of DDC. The first section presents a more complete

graphical model of both the DDC process and how the compiler-under-test is claimed to have

been created. This is followed by a description of the formal notation used (first-order logic

(FOL) with equality), the rationales used in proof steps (aka the derivation rules or rules of

inference), the tools used, and various proof conventions. After this, the three key proofs are

presented. Each proof presents a set of predicates, functions, and assumptions about DDC in the

formal notation, and shows how they lead to the concluding proof goal. The three proofs are:

• Proof #1, goal source_corresponds_to_executable: This is the key proof for DDC. It

shows that given certain assumptions, if stage2 (the result of the DDC process) and cA

(the original compiler-under-test) are equal, then the executable cA and the source code sA

exactly correspond.

• Proof #2, goal always_equal: This proves that, under “normal conditions” (such as when

compiler executables have not been rigged and thus do correspond to their respective

source code), cA and stage2 are in fact always equal. Thus, the first proof is actually

useful, because its assumptions will often hold. This also implies that if cA and stage2 are

not equal, then at least one of its assumptions is not true.

• Proof #3, goal cP_corresponds_to_sP: The previous “always_equal” proof does not

require that a “grandparent” compiler exist, but having one is a common circumstance.

This third proof shows that if there is a grandparent compiler, one of the assumptions of

44

proof #2 can be proved given other assumptions that may be easier to verify (potentially

making DDC even easier to apply in this common case).

5.1 Graphical model for formal proof

Figure 4 graphically represents the DDC stages and how the compiler-under-test cA was

putatively created. This is a more rigorous version of figure 2; the formal model includes more

detail to accurately model potentially-different compilation environments and the effects these

environments have on the compilation processes.

This dissertation argues that if the DDC process produces a “stage2” that is identical to the cA,

and certain other assumptions are true, then the executable stage2 corresponds to the source code

sA. The similarity of the DDC process and claimed origin figures suggest that this might be

reasonable, but the challenge is to formalize exactly what those assumptions are, and then prove

that this is true from those assumptions.

45

Figure 4: Graphical representation of DDC formal model

1
sP

(language
lsP)

2

stage1
sA

(language
lsA) stage2

(run on eArun)

e1effects
(from e1)

e2effects
(from e2)

cT (Trusted Compiler)
DDC Process Claimed Origin

o1sP

o2

cP

sA

cA

(run on eArun)

ePeffects
(from eP)

eAeffects
(from eA)

cGP

5.1.1 Types

Although types (sorts) are not directly used in the proof, it is easier to explain the graph and

proofs by assigning types to the various constants used. There are four basic types:

• Data: For our purposes, data is information that is used as source code (input) and/or is

the resulting executable (output) of a compilation. Some of the data could be both source

and executable (e.g., a library object file could be executed during compilation and also

copied into the final executable). Thus, as implied by its definition, data can be either (or

both):

– Executable: Data that can be executed by a computing environment. Compilers

produce executables, and compilers themselves are executables.

– Source: Data that can be compiled by a compiler to produce an executable. Any

source (aka source code) is written in some language.

• Environment: A platform that can run executables. This would include the computer

hardware (including the central processing unit) and any software that supports or could

influence the compiler’s result (e.g., the operating system). It could include a byte code

interpreter or machine simulator.

• Language: The language, used by some source, that defines the meaning of the source.

• Effects: All information or execution timing arising from the environment that can affect

the results of a compilation, but is not part of the input source code. This is used to

model random number generators, thread execution ordering, differences between

platforms allowed by the language, and so on. Note that this is not simply data in the

usual sense, since other issues such as thread execution ordering are included as effects.

46

5.1.2 DDC components

The DDC process, as shown in figure 4, includes the following components, with the following

types and meanings:

• cT: Executable. The trusted compiler. It is trusted in the sense that it is trusted to not

have triggers or payloads that will activate when compiling source sP.

• sP: Source. The (putative) source code of the “parent” compiler.

• sA: Source. The (putative) source code of the compiler-under-test (cA).

• e1: Environment. The environment that executes compilation step 1, which uses cT to

compile sP and produce stage1.

• e2: Environment: The environment that executes compilation step 2, which uses stage1 to

compile sA and produce stage2.

• eArun: Environment: The environment that stage2 is intended to run on.

• lsP, lsA: Language. The languages used by source sP. and sA, respectively.

• e1effects: Effects. The effects sent from environment e1 to compilation step 1.

• e2effects: Effects. The effects sent from environment e2 to compilation step 2.

• stage1: Executable. The result of DDC compilation step 1. This will be defined, using

the functional notation below, as compile(sP, cT, e1effects, e1, e2).

• stage2: Executable. The result of DDC compilation step 2. This will be defined as

compile(sA, stage1, e2effects, e2, eArun).

Note that sA may be equal to sP, e1 may be equal to e2 or eArun, e2 may be equal to eArun, and

lsA may be equal to lsP. These identities are permitted but not required by DDC. All processes

(including the compilations and their underlying environments, the process for acquiring cA, and

47

the process for comparing cA and stage2) must be trusted (i.e., they must not have triggers or

payloads that affect their operation during DDC).

5.1.3 Claimed origin

The compiler-under-test cA was putatively developed by a similar process. This “claimed origin”

process can also be modeled, with the following components not already described in the DDC

process:

• cGP: Executable. The grandparent compiler, if there is one.

• eP: Environment. The environment that executes compilation step o1, which uses cGP to

compile source sP and produce executable cP.

• eA: Environment: The environment that executes compilation step o2, which uses cP to

compile sA and produce cA.

• ePeffects: Effects. The effects sent from eP to compilation step o1.

• eAeffects: Effects. The effects sent from eA to compilation step o2.

• cP: Executable. Putative parent compiler.

• cA: Executable. The compiler-under-test, which putatively was developed by the process

above.

Note that compiler-under-test cA may, in fact, be different than if it were really generated through

this process. But if cA was generated through this process, we can prove that certain outcomes

will result, given certain assumptions, as described below.

48

5.2 Formal notation: First-Order Logic (FOL)

The formal logic used in this dissertation is classical first-order logic (FOL) with equality, aka

first-order predicate logic. FOL was selected because it is a widely understood and accepted

formal logic system9. This dissertation uses the FOL notation and conventions defined in

[Huth2004, 93-139]. In FOL, every expression is a term or a formula.

A term (which denotes an object) is defined as: a variable, a constant, or a function application of

form f 1 ,2 , ... ,n where each of the zero or more comma-separated parameters is a term. In

this dissertation, variables begin with an uppercase letter, while constants begin with a lowercase

letter (this is the same convention used by Prolog).

A formula (which denotes a truth value) is defined as: ¬, ∧, ∨, , ∀,

1=2, 1≠2, or a predicate of form p1 ,2 , ... ,n where each of the one or more comma-

separated parameters is a term. This definition requires that  and  are formulas,  is an

unbound variable, and anything beginning with  is a term.

In some sense, a formula is a boolean expression that represents true or false, while a term

represents any non-boolean type. Functions and predicates have the same syntax if they have any

parameters. Table 1 shows the traditional FOL notation for FOL expressions (terms and

formulas), an equivalent American Standard Code for Information Interchange (ASCII)

representation, and a summary of its meaning10:

9For an “analysis and interpretation of the process that led to First-Order Logic and its consolidation as
a core system of modern logic” see [Ferreirós2001]. An alternative to classical logic is intuitionist logic,
which does not accept the equivalence of ¬¬ and  as being universally true; [Hesseling2003] describes
in detail the early history of intuitionist logic.

10As a notation, FOL does have weaknesses. For example, predicates and functions cannot have
formulas (booleans) as parameters, so traditional FOL cannot express a function if_then_else(formula1,
term1, term2) that returns term1 if formula1 is true, else it returns term2. FOL also does not include built-
in support for types (sorts). There are extensions and alternatives which remove these weaknesses.

49

Table 1: FOL notation
Traditional

Notation
ASCII

Representation
Meaning

¬ - PHI not , aka negation. If  is true, ¬ is false; if  is false,
¬ is true. ¬¬ is equivalent to .

∧ PHI & PSI Φ and Ψ, aka conjunction, aka “logical and”. Both Φ and Ψ
must be true for the expression to be true.

∨ PHI | PSI Φ or Ψ, aka disjunction, aka “logical inclusive or”. Φ, Ψ, or
both must be true for the expression to be true.

 PHI -> PSI Φ implies Ψ, aka implication, entailment, or “if Φ, then Ψ”.
Equivalent to ¬∨.

∀ all Chi PHI For-all, aka universal quantification. For all values of
variable , is true. In this dissertation, this is optional; all
unbound variables are universally quantified.

1=2 tau_1 = tau_2 τ1 equals τ2. If true, τ2 can substitute for τ1.

1≠2 tau_1 != tau_2 τ1 is not equal to τ2. Equivalent to ¬=.

x (1 ,2 ,
 ... ,n)

x(tau_1, tau_2, ...,
tau_n)

Function or predicate x with terms 1 ,2 , ... ,n. A
predicate is like a function that returns a boolean.

Parentheses are used to indicate precedence. FOL also has a “there exists” notation (using ∃)

which is not directly used in this dissertation. A formula is either true or false (this is the

principle of the excluded middle); thus, ∨¬ is true for any formula . In this dissertation, a

top-level FOL formula is terminated by a terminating period (“.”).

For example, the following FOL formula could represent “all men are mortal”:

man(X) -> mortal(X).

This formula can be read as “for all values of X, if X is a man, then X is mortal”. Note that “X”

is a variable, not a constant, because it begins with a capital letter. Also note that since X is not

bound, an implied “all X ...” surrounds the entire formula.

However, since these FOL weaknesses do not interfere in the proof of DDC, and since traditional FOL is
both widely-understood and widely-implemented, FOL is used in this dissertation.

50

In addition, the following formula could be used to represent “Socrates is a man”:

man(socrates).

From these two formulas, it can be determined that “Socrates is mortal”:

mortal(socrates).

FOL is a widely-used general notation, and not designed for proofs about specific fields (such as

compilation). Thus, as with most uses of FOL, additional “non-logical” symbols must be added

before particular problems can be analyzed. In this dissertation, these additions are the various

constant terms in the graphical model described in 5.1 (above), as well as various predicates and

functions that will be defined below. The proofs below will introduce these predicates and

functions, as well as various assumptions, and then show that certain important conclusions

(termed “goals”) can be formally proved from them. Some assumptions define a term, predicate,

or function; these assumptions are also called “definitions” in this dissertation.

All formal models, including the one in this dissertation, must include lowest-level items (such as

predicates, functions, and constants) that are not defined in the formal model itself. Therefore, it

is unreasonable to protest that these lowest-level items are not defined in this model, since that is

necessarily true. The key is that the lowest-level items should accurately model the real world,

thus forming a rational basis for proving something about the real world.

5.3 Proof step rationales (derivation rules or rules of inference)

Every step in each formal proof must have a rationale (aka a derivation rule or rule of inference).

In this dissertation, only the following rationales are permitted in the formal proofs (for clarity,

the terminating “.” in top-level formulas is omitted in this list):

• Assumption: Given assumption. All definitions are assumptions.

• Goal: The given goal to be proved.

51

• Clausify: Transform a previous step (formula) into a normalized clausal form. In

particular, all expressions of the form  are transformed into ¬∨. For

example, using the example in section 5.2, “man(X) -> mortal(X)” can be transformed

into “-man(X) | mortal(X)”. See [McCune2008] and [Duffy1991] for a detailed

description.

• Copy...flip: Copy a previous result but reverse the order of an equality statement. Thus,

given =, this rationale can produce =.

• Deny: Negate a previous step; this processes the goal statement. All formal proofs in this

chapter are proofs by contradiction; the goal is negated by the “Deny” rule, and the rest

of the proof shows that this leads to a contradiction.

• Resolve: Resolution (aka general resolution), that is, produce a resolvant from two

clauses. Resolution is a generalized version of ground (propositional) resolution, so to

explain resolution, we will first explain ground resolution.

Ground resolution is a derivation rule that applies to clauses in propositional logic (a

simpler logic than FOL that lacks terms, predicates, functions, quantification (for-all and

there-exists), and equality; variables are true or false). Ground resolution requires two

ground clauses (formulas) which can be reordered into the forms ∨ and ' ∨,

where ' is a complement (negation) of formula , and where , , or both may be

empty. From that, ground resolution can derive ∨ removing any duplicates (this

can be informally viewed as combining the two clauses with  and ' “canceling” each

other). If both  and  are empty, the empty clause (false) is derived. For example,

given both P∨Q and ¬P∨R, ground resolution can derive Q∨R. Ground resolution is

a sound rule for reasoning because any formula  must be either true or false: If  is

52

false, and ∨ is true, then  must be true. If  is true, then  ' is false, and since

 ' ∨ is true, then  must be true. Since either  or  must be true, it follows that

∨ is always true. The traditional logic rule modus ponens (given  and , then

) is a special case of ground resolution;  can be rewritten (using clausify) as

¬∨, and ground resolution can combine  with ¬∨ to derive .

The full resolution rule extends ground resolution so that it can handle quantifiers and

predicates. It does this by using unification, the process of replacing the variables in the

expressions with terms to make the modified expressions identical to each other. For

details, see section 3.3 of [Duffy1991] or [Robinson2001].

For example, given “-man(X) | mortal(X)”, we can substitute “X=socrates” yielding

“-man(socrates) | mortal(socrates)”; this can then be combined with “man(socrates)” to

prove “mortal(socrates)”.

• Para: Paramodulation, a rule that adds support for the equality relation. This replaces an

expression with another expression it is equal to, including any parameter substitutions.

For example, given “f(d, e, X)” and “f(A, B, C)=g(C, B, A)”, paramodulation can derive

“g(X, e, d)”. The precise definition of this rule is complex (e.g., it handles cases where

the equality holds only under certain conditions); for details, see section 3.3.7 of

[Duffy1991] or [Robinson2001].

These proof step rationales (aka derivation rules or rules of inference) were used because they are

the rationales supported by the selected proof tools.

53

5.4 Tools and rationale for confidence in the proofs

5.4.1 Early DDC proof efforts

Early versions of these proofs were developed by hand. Unfortunately, it was very difficult to

rigorously check or amend those hand-created proofs11.

The tool named Prototype Verification System (PVS) was then used for some time, in part

because it has a powerful notation that supports type-checking (which can eliminate some errors)

and higher-order logic [Owre2001]. At the time, it was thought that higher-order logic would be

especially helpful, since a compiler can be viewed as a computational function that produces a

computational function. However, while PVS is very good at what it does, and several proofs

were created using PVS, PVS required a large amount of manual effort to produce the proofs.

These early proofs showed that higher-order logic was not necessary or especially helpful in

modeling this particular problem, and that other logic systems and provers could be used instead.

Many other tools have less powerful notations (e.g., first-order logic without types) but can better

automate proof development.

5.4.2 Prover9, mace4, and ivy

The final proofs, as presented in this dissertation, were developed and checked with the assistance

of several related tools: prover9, mace4, and ivy:

• Prover9 is an automated theorem prover for first-order and equational (classical) logic,

which uses an ASCII representation of FOL. All of the proofs given in this chapter were

developed by prover9 version Aug-2007.

11 For example, the original hand-created proofs did not account for the possibility of different
environments. When attempting to modify the proofs to account for the different environments, the painful
“bookkeeping” required to keep the proof accurate soon led the author to look for an automated tool.

54

• Mace4 is a tool paired with prover9 that searches for finite structures satisfying first-

order and equational statements (the same kind of statement that Prover9 accepts). From

a logic point of view, mace4 produces interpretations which are models of the input

formulas; from a mathematical point of view, mace4 produces structures satisfying the

input formulas. Put simply, mace4 tries to find an assignment of integers 0..n-1 (the

“domain”) to each constant term, to each function (given their possible inputs in the

domain), and true/false values for each predicate that will satisfy the given set of

statements. By default, mace4 starts searching for a structure of domain size 2, and then

it increments the size until it succeeds or reaches some limit.

• Ivy is a separate proof checker that can accept and verify the proof as output by prover9.

Ivy is written using A (sic) Computational Logic for Applicative Common Lisp (ACL2)

and has itself been proven sound using ACL2 [McCune2000]. All of the prover9 proofs

were verified by ivy. Indeed, one reason prover9 was chosen over some other tools was

the availability of ivy.

Far more detail about prover9 is provided in [McCune2008]; its general approach (in particular,

information on resolution and paramodulation) is discussed in detail in texts such as [Duffy1991]

and [Robinson2001]. For purposes of this dissertation, prover9 is given a set of assumptions and

a goal statement, using first-order logic (FOL) with equality. Prover9 negates the goal,

transforms all assumptions and the goal into simpler clauses, and then attempts to find a proof by

contradiction. Should prover9’s search algorithm find a proof, it can print the sequence of steps

and the rationale for each step that leads to the proof.

55

5.4.3 Tool limitations

Unlike PVS, traditional FOL and the prover9 tool (which implements FOL) do not directly

support types (sorts). It is possible to implement types (sorts) using FOL: types of constants can

be declared as assertions (e.g., “executable(cA)” could represent “cA is an executable”), assertions

about compilers could be modified to state the types of compiler inputs and outputs, and the goal

could be extended to include type requirements. However, because prover9 does not directly

support type declaration, implementing types in prover9 makes the proofs far more complicated.

These complications do not add value, because the types of compiler input and output are not in

doubt (and thus do not need proof). In this dissertation types are only used as part of the

comments to clarify the proof results, and are not directly expressed in the proof notation.

It should be noted that these tools did not make creating the proofs trivial. In particular, prover9

can only find a proof given a correct goal and assumptions. When prover9 cannot prove a goal, it

either halts with a declaration that it cannot prove the result or it times out. In either case it is

often difficult to determine why the proof cannot be found. The companion tool mace4 may be

able to find a counter-example, but even then it is often not obvious what is wrong. In practice,

the proofs were developed by first creating very simplified models of the world, and then

expanding them stepwise to model additional complexities of the real world.

Prover9 will sometimes use information it does not need, leading to overly-complicated proofs.

To counteract this, each proof was developed separately and includes only the statements

necessary for the proof.

56

5.4.4 Proofs’ conclusions follow from their assumptions

There are many reasons to have very high confidence that the formal proofs’ conclusions follow

from their assumptions:

• The proofs were automatically generated by an automated tool, prover9. This eliminates

many opportunities for error caused by manual proofs.

• The generated proofs were verified by the separate tool ivy. Ivy cannot create proofs; it

is a simple program that checks that each step is correct. This cross-checking increases

the confidence that the proof is correct.

• Ivy itself has has been proven sound using ACL2.

• The source code for prover9, ivy, and ACL2 are all publicly visible under the terms of the

GNU General Public License (GPL). This public visibility enables widespread public

review.

• The proofs were hand-verified by the author. They have also been reviewed by several

people at the Institute for Defense Analyses (IDA) and by the PhD committee members.

In short, there are good reasons to have very high confidence that these proofs correctly prove

their goals, given their assumptions.

5.4.5 Proofs’ assumptions and goals adequately model the world

A related question is whether or not the formally-stated assumptions are an adequately accurate

model of the real world. There are good reasons to believe this is also true:

• The assumptions have been proven to be consistent using mace4. In classical logic an

inconsistent set of assumptions can be used to prove any claim, so it is important that a

set of assumptions be consistent. If a set of first-order statements are simultaneously

57

satisfiable, then that set is consistent (see page 410 of [Stoll1979] for a proof of this

statement). The set of assumptions in each of the three proofs have been shown by the

mace4 tool to be satisfiable (i.e., for each proof mace4 can create a model that satisfies

the set of assumptions). Therefore, the assumptions used in each proof are consistent.

See appendix C for the mace4 models that show the assumptions are consistent. For

another example of a project that used mace4 to check for consistency, see

[Schwitter2006].

• The assumptions and goals are based on the informal justification previously published in

the 2005 ACSAC paper [Wheeler2005]. This paper passed independent peer review

before its publication, and no one has refuted it since.

• These assumptions and goals have been reviewed by the author, several people at the

Institute for Defense Analyses (IDA), and all of the dissertation committee members.

• All of the outcomes from the demonstrations described in chapter 7 can be explained in

terms of these proofs.

• The formalization process forced the author to clarify that three proofs were needed, not

just one. Originally, the author intended to only create one proof (proof #1), but as it was

developed, it became clear that multiple proofs were needed. This suggests that insight

was gained through the process of developing the formal proof, and an author who has

gained insight into the problem is more likely to produce final assumptions and goals that

adequately model the world.

• The proofs clearly fit together. Proof #3 shows that if there is a benign environment and

a grandparent compiler, then cP_corresponds_to_sP (to be defined) is true. Proof #2

shows that if there is a benign environment and cP_corresponds_to_sP is true, then

stage2=cA. And finally, proof #1 shows that if stage2=cA, then cA and sA correspond.

58

Therefore, there are good reasons to believe that these assumptions and goals adequately model

the real world.

5.5 Proof conventions

The notation of prover9 only supports simple ASCII text, and does not directly support the

Unicode characters for logic notation (such as →) nor subscripts (such as cA) by default. Thus,

the ASCII representation is used for all prover9 representations and results below. Constants

with subscripts are represented by simply appending the subscript value, e.g., cA is notated as cA.

Spaces and newlines are occasionally inserted to improve readability. All successful prover9

proofs end with the conclusion “$F” (false). This means that prover9 was able to find a

contradiction given the assumptions and the negation of the goal. Definitions are a kind of

assumption; their names begin with “definition_” if they are of the form “constant =

EXPRESSION”, and begin with “define_” otherwise. In the prover9 proof, assumptions and

goals are assigned names using the prover9 “label” attribute (not shown in this dissertation).

Each of the proofs below begins with a formal statement (using FOL formulas) of the goal to be

proved, along with a textual explanation. This is followed by sections that introduce the required

predicates, functions, and assumptions, as well as restating the goal. The predicates and functions

are first described by showing in a fixed-width font the keyword “predicate” or “function”, the

predicate/function name, and its parentheses-surrounded parameters (using initial capital letters).

The assumptions (including definitions) and goal are first described using FOL formulas ending

with a period. Predicates, functions, and assumptions are each described further in explanatory

text. These are followed by a prover9 proof (verified by ivy), which shows in a table format how

the assumptions prove the goal (using proof by contradiction). The table includes the rationale

for each step. The prover9 proof is followed by additional discussion about that proof.

59

5.6 Proof #1: Goal source_corresponds_to_executable

The key proof for DDC is to show that, if stage2 (the result of the DDC process) and cA (the

original compiler-under-test) are equal, then the compiled executable cA and the source code sA

exactly correspond. This goal is easily represented by the following formula (using ASCII

representation) named source_corresponds_to_executable:

(stage2 = cA) -> exactly_correspond(cA, sA, lsA, eArun).

As with all formal proofs in this dissertation, this proof introduces various predicates, functions,

and assumptions. Since this first proof is central to the entire dissertation, as each assumption is

introduced it will be shown how it builds toward the final goal. This is followed by a prover9

table (showing how the assumptions prove the final goal) and a brief discussion.

5.6.1 Predicate “=” given two executables

The predicate “=” (equal-to, aka equality) is part of the goal statement; it compares two

executables to determine if they are equal. It is an infix predicate with this form:

predicate Executable1 = Executable2

For purposes of DDC, two executables are equal if they have exactly the same structure and

values as used by the environment when it runs either executable. When performing DDC, this

test for equality must occur in an environment that is trusted to accurately report on the equality

of two executables (i.e., the environment and program implementing this equality test must not

have triggers/payloads for the values tested), and the two executables being compared must have

been acquired in a trustworthy way.

In a traditional operating system with a filesystem, an executable would normally be one or more

files, where each file would be a stream of zero or more bytes as well as metadata controlling its

execution (including the set of attributes determining if and how to run the file). The sequence of

60

bytes must be identical (the same length and at each position the same value), and the metadata

effecting execution must have the same effect in execution when transferred to its execution

environment (e.g., the “execution” flag or equivalent must have the same value so that they are

both executable). The “have the same effect” phrase is stated here because differences that are

not used by the environment during execution are irrelevant. In particular, many operating

systems record “date written” as part of the metadata, and this would typically not be the same

between different compilation runs. Nevertheless, as long as those differences do not effect

program execution, they do not matter. Indeed, if the differences are only compared in certain

ways, and those relationships are maintained, then they do not matter. Thus, if a “makefile”

compares dates, but only to determine which files came before or later, the specific dates do not

matter as long as the relationships are maintained. In practice, it is relatively easy to determine

what metadata has an effect by examining the source code sA and sP; if the source code does not

use it (directly or via calls to the environment), then given the other assumptions, the resulting

stage2 executable from DDC will not invoke them either. This is because the DDC process

(though not the original generation process) is required to not include triggers or payloads that

affect the execution process (as discussed in section 3.2).

If the executables are S-expressions12, the usual definition of S-expression equality is used:

Atoms are only equal to themselves (so 5=5), NIL is only equal to itself, and lists are equal iff

they have the same length and each of their elements are equal. NIL and an empty list are distinct

if and only if the execution environment can distinguish them. We presume S-expressions are

12“S-expression” is short for “symbolic expression”. It is a convention for representing semi-structured
data in human-readable textual form, and is used for both code and data in Lisp. For our purposes, an S-
expression may be an atom (a number, symbol, or special term NIL) or a list; a list contains 0 or more
ordered S-expressions. The actual definition is more complex (involving CONS pairs), but this is not
important for purposes of this dissertation.

61

written out as text and read back before use (otherwise there may be complications due to pointer

equivalence).

Note that equality is a stricter relationship than equivalence. Two executables may be considered

equivalent in an environment if they always produce equal outputs given equal inputs, even if

their internal structure and/or values are different. Two executables that are equal are always

equivalent, but equivalent executables need not be equal. Unfortunately, determining if two

executables E1 and E2 are equivalent is undecidable in the general case. This is because if there

was any decision procedure D capable of determining equivalence, it could be invoked by E1 and

E2. If found equivalent they could perform different operations, and if found different they could

act the same [Cohen1984, part 4]. Even in very special cases it is often difficult to determine the

equivalence of two unequal executables. Instead of focusing on the difficult-to-determine

equivalence relationship, we will instead focus on the stricter equality relationship, which is a far

easier and more practical test to perform. Proof #2 and proof #3 will show that under certain

common conditions, two executables will be equal (not just equivalent), so limiting proof #1 to

equality does not significantly limit its practical utility.

5.6.2 Predicate exactly_correspond

The goal statement makes no sense unless the predicate “exactly_correspond” is defined.

Predicate “exactly_correspond” has the following parameters:

predicate exactly_correspond(Executable, Source, Lang, RunOn)

This predicate is defined to be true if, and only if, the Executable exactly implements source code

Source when (1) that Source is interpreted as language Lang and (2) the Executable is run on

environment RunOn. For this predicate to be true, the Executable must not do anything more,

anything less, or anything different than what is specified by Source (when interpreted as

62

language Lang). Note that this does not require that Source is a perfect implementation of some

abstractly-defined language. In section 5.6.8 we will define a condition that will make the

predicate exactly_correspond true.

5.6.3 Predicate accurately_translates

A related predicate that must be defined is accurately_translates, with these parameters:

predicate accurately_translates(Compiler, Lang, Source, EnvEffects,
RunOn, Target)

This predicate is true if and only if the Compiler (an executable) correctly implements language

Lang when compiling a particular Source and given input EnvEffects (from the environment),

when it is run on environment RunOn and targeting environment Target. The Target is the

environment that the compiler generates code for (which need not be the same as the environment

the compiler runs in). The EnvEffects parameter models variations in timing and inputs from the

environment, and will be explained further in the definition of the “compile” function in section

5.6.5.

5.6.4 Assumption cT_compiles_sP

We must assume that the trusted compiler cT is a compiler for language lsP (the language used by

source code sP), that cT will accurately translate sP when run in environment e1, and that cT targets

(generates code for) environment e2. This assumption is named cT_compiles_sP:

all EnvEffects accurately_translates(cT, lsP, sP, EnvEffects, e1, e2).

In short, cT has to accurately implement the language lsP, at least sufficiently well to compile sP.

Otherwise, cT can’t be used to compile sP. For example, if sP was written in C++, then a Java

compiler cannot be directly used as the trusted compiler cT. Compiler cT must not have triggers or

payloads that activate when compiling sP. Neither e1=e2 nor e1≠e2 is asserted; thus, e1 may but

63

need not be the same as e2. The “all” in the formal statement is optional, but is included here for

emphasis.

5.6.4.1 Implications for the language

This proof could have been created without mentioning languages at all; the formal model could

simply require that (1) cT will accurately translate sP when run in environment e1 and that (2) cT

targets (generates code for) environment e2. However, it would have been easy to misunderstand

the proof results. For example, without noting the different languages, the proof could be easily

misunderstood as requiring that all compilers implement the same language. Noting the

languages clarifies that they can be different, and clarifies that the languages should be

considered when performing DDC. Including the languages in the proofs also provides a check

on the proof that is similar to type-checking: The proof requires that in each compilation, the

compiler used must support the language of the source code used as input.

The language lsP must include all of the syntactic and semantic requirements necessary to

correctly interpret sP. It may, but need not, include additional requirements not required to

interpret sP (as long as they do not interfere with interpreting sP). In particular, lsP need not be the

same as the language documented in an official (e.g., standardized) language specification, even

if one exists. For example:

• lsP may omit any requirements in an official specification, as long as the source code

does not require them. So an official specification may include support for threading or

floating point numbers, but if they are not needed when compiling the source code, then

they can be safely omitted from lsP.

64

• lsP may impose additional requirements that are explicitly left undefined in an official

specification. For example, if an official language specification permits certain

operations to be done in an arbitrary order (such as right-to-left or left-to-right evaluation

of function parameters), but the given source code requires a particular order of

evaluation, then lsP must add the additional ordering requirement. Such additional

requirements, if any, should be included in the source code’s documentation. It is usually

better if the source code only requires what an official language specification guarantees,

because there are likely to be more alternative compilers. But it’s quite common for

compiler sources to make assumptions that are not guaranteed by official specifications,

and DDC can still be used in such cases.

• lsP may impose additional length or size requirements than those imposed by an official

specification. For example, if the source code requires support for certain identifier

lengths, depth of parentheses, or size of result, then lsP includes those requirements.

• If lsP includes ambiguous requirements, or requirements that are not fully defined, then

those ambiguities or inadequate definitions must not matter when compiling the source

code.

• lsP may add various extensions as requirements that are not part of the official

specification. Unsurprisingly, if the source code requires extensions, then the compiler

used to compile that source code must somehow support those extensions.

• lsP could even directly contravene an official specification on certain issues; what matters

is what is required to correctly compile the source code.

The language lsP need not be formally specified, nor must it exist as a single document. If

expressed, it is likely to take the form of a reference to an existing language standard combined

65

with a description of the permitted omissions, the changes, and the additions. For proof purposes,

the language specification need not be written at all; all that is required is that the compilers and

source code conform if it were written. Of course, if the specification is not written, it is difficult

to check for compliance to it.

The “language” may even be a set of languages, including a language for selecting which other

language to use (e.g., the file extension conventions used for selecting between languages). For

example, GNAT (whose name is no longer an acronym) is an Ada compiler whose front-end is

written in Ada, but the rest of the compiler is written in C. A trusted compiler suite for GNAT

would need to be able to compile both Ada and C, as well as correctly process the file extension

conventions used by the GNAT source code to differentiate between languages.

5.6.4.2 Implications for the trusted compiler and its environment

Compiler cT need not implement a whole language, as defined by an official language

specification—it only needs to implement what is required to compile sP. So cT may be a very

limited compiler. In some cases, some compiler cQ may only be suitable for use as a part of

trusted compiler cT if the source code goes through a preprocessor, or if the resulting executable

goes through a postprocessor. For example, a preprocessor may be needed to convert

nonstandard constructs into constructs that cQ can handle, or perhaps cQ implements a different

specification. In this case, the compiler cT is the combination of the preprocessor and cQ. In

theory there’s no limit to how many steps can be chained together to construct cT, but since they

are all part of the trusted compiler they must be sufficiently trustworthy to meet the assumptions

of the proof. In practice, these steps (including the use of preprocessors and postprocessors)

should be limited, to limit the number and size of tools that are granted such trust.

66

Note that the trusted compiler (cT) and the environment it executes on (e1) do not need to be

completely defect-free nor non-malicious. This is important, since defect-free compilers and

environments are rare, and ensuring absolute non-maliciousness is difficult. Compiler cT or

environment e1 may be full of bugs, and/or full of triggers and payloads for inserting corrupted

code into other programs (including itself). We merely require that cT, when executed on e1,

perform an accurate translation when it compiles exactly one program’s source code: sP. So cT

may have defects – but they must not affect compiling sP. Similarly, cT may have triggers and

payloads to create maliciously corrupted executable(s) – but cT must not have triggers for sP, or if

it does, its payloads must not affect the results. Various real-world actions, such spot-checking or

formally verifying the compiler executable cT, can increase confidence that this assumption is true

in the real world. In some cases, a secret compiler (where reading/writing its source,

reading/writing its executable, and using it as a service is expressly limited to very few trusted

people) may be useful as the trusted compiler; via DDC, it can be used to greatly increase

confidence in the publicly-available compiler.

It is worth noting that one of these potential failures is memory failure. Recent field studies have

found that dynamic random access memory (DRAM) error rates are orders of magnitude higher

than previously reported, and memory errors are dominated by hard errors (which corrupt bits in

a repeatable manner) rather than soft errors [Schroeder2009]. The risk of such failures can be

greatly reduced by using memory test programs to check the environment before performing

DDC, and by using memory systems that include error correcting code(s) (ECC).

There is a subtlety in the formal model that is normally handled correctly by compiler users, but

is noted here for completeness. That subtlety is that when performing DDC, we typically need to

have different build instructions (as executed by the “real” compilers and environment) than

67

when sP and sA were originally compiled. At first glance this appears to be a problem, because in

the formal model of DDC, the source code sP and sA that is used in DDC must be exactly the same

as the source code used in its original purported creation process. Yet the source code may

include build instructions, indeed, nontrivial compilers often include complex build instructions

as part of their source code. But if the build instructions are part of the source code, and the build

instructions invoke a compiler other than cT, how can trusted compiler cT be invoked during

DDC? Similarly, if the environments e1 or e2 are different than the environments eP and eA

(respectively), and/or if the option flags are different between compilers, how are these changes

modeled? And similarly, if the build systems are substantially different (e.g., there are different

build languages), how can we accurately model translating the build language? One solution is to

consider the build instructions as not included in the source code, but this is grossly unrealistic for

larger compilers with complex build instructions.

A better alternative that completely models these circumstances is to consider the build

instructions to be part of the source code, and also consider the trusted compiler cT to be some

“real” compiler cT′ plus a preprocessor. This preprocessor is trusted to correctly change the build

instructions in a way that meets this assumption, e.g., so that the compilation process invokes cT′

instead of the original compilation process. In practice, this preprocessor is likely to be

implemented by a human who modifies the build process (e.g., by setting an environment

variable, modifying a makefile, using a different set of arguments when invoking “make”, or

hand-translating the build instructions to a different build language). This step is so “obvious” to

most compiler users that it would not normally be remarked on. Often this transformation is so

simple that it is easy to forget that it even occurred. Nevertheless, by acknowledging this step,

the formal model of DDC can accurately model what actually occurs. Since it is part of the

68

trusted compiler cT, this preprocessor step must be trusted to not include triggers and payloads

that would effect the DDC compilation.

In general, the internal structure of trusted compiler cT is irrelevant for the proof. Many problems

in applying DDC (including modeling necessary changes to the build process as noted above) can

be resolved by combining various processes (including preprocessors and/or postprocessors) as

necessary to produce the final trusted compiler cT. The only requirement is that all required

assumptions (including the definitions) are met.

5.6.5 Function compile

Unsurprisingly, we must model compiling a program. We will model compiling as a function that

returns an executable (a kind of data)13 and has the following parameters:

function compile(Source, Compiler, EnvEffects, RunOn, Target)

This represents compiling Source with the Compiler, running the compiler in environment

RunOn, and instructing the compiler to generate an executable for the target environment Target.

Note that Target may or may not be the same as RunOn.

The parameter “EnvEffects” overcomes an issue in typical mathematical notation. In typical

mathematical notation, a function provided with the same inputs will always produce the same

outputs. Without the “EnvEffects” parameter, this would imply that a given compiler executable,

when given the same Source, RunOn, and Target, will always produce exactly the same output

(i.e., that it is deterministic). Unfortunately, this is not always true for all compilers. Some

compilers will produce different outputs at different times, even when given the same source

code. The reason is that environments can provide “effects”, which are essentially inputs to the

13As noted in section 5.2, the FOL notation used in this paper does not have a built-in mechanism for
notating types such as “data” or “executable”. As explained in section 5.1.1, types are noted to make the
proof easier to understand, even though they are not directly used in the proof’s formal notation.

69

compilation process that affect the outcome but are not part of the source code. Examples of

effects that can cause non-determinism are:

• Random number generators. A compiler’s code generator or optimizer might have

multiple alternatives, and instead of picking one deterministically, it might call on a

random number generator to make that determination. If the environment provides

different random numbers each time it is run, the results might be different. Note that

under certain circumstances the GCC compiler will use a random number generator, but

GCC also allows users to select a seed; if a seed is selected, then the sequence is

deterministic and not random at all.

• Heap allocation address values. Many systems today randomize addresses (e.g., of the

heap or stack), in an attempt to counter attackers by making certain kinds of attacks

harder to perform. However, a compiler’s output may be changed by different address

values. For example, some Java compilers use heap allocation addresses for hash

calculation, and then use those hash values to control the sort order of some output. As a

result, the output ordering may be different between executions, even given the same

source code, execution environment, and target environment.

• Execution order due to threading. Some compilers are multi-threaded and are only

loosely ordered. The environment may execute the threads in a different order in

different executions, and depending on the compiler, this may affect the output.

Thus, EnvEffects models the inputs from the environment which may vary between executions

while still conforming to the language definition as used by Source.

As noted earlier, libraries may be modeled by considering them as part of the compiler (if they

are executed) or part of the source (if they are used as input data but not executed).

70

In some discussions of DDC, we will occasionally use the simpler definition:

function compile(Source, Compiler)

Of course, this definition cannot represent the different environments (RunOn and Target), nor

can it represent the possibility that some programs are non-deterministic (which is modeled by

EnvEffects), but in some situations these can be inferred from context. In some cases the

function name “c” is used as an abbreviation for “compile”.

5.6.6 Assumption sP_compiles_sA

We must assume that the source code sP (written in language lsP) defines a compiler that, if

accurately compiled, would be suitable for compiling sA. To formally state this, we will assert

that if we have some GoodCompilerLangP with the right properties, then using

GoodCompilerLangP on sP will produce a suitable executable:

accurately_translates(GoodCompilerLangP, lsP, sP,
EnvEffectsMakeP, ExecEnv, TargetEnv) ->

accurately_translates(
compile(sP, GoodCompilerLangP, EnvEffectsMakeP,

ExecEnv, TargetEnv),
lsA, sA, EnvEffectsP, TargetEnv, eArun).

Strictly speaking, the name “sP_compiles_sA” is misleading; there is no guarantee that source

code can be directly executed. However, more-accurate names14 tend to be very long and thus

hard to read.

Note that by combining this assumption (sP_compiles_sA) and the previous assumption

cT_compiles_sP, we can determine a new derived result which we will name

sP_compiles_sA_result:

accurately_translates(compile(sP, cT, EnvEffectsMakeP, e1, e2),
lsA, sA, EnvEffectsP, e2, eArun).

14 Such as “sP_when_accurately_compiled_compiles_sA”

71

Note that EnvEffectsMakeP and EnvEffectsP are not bound to any particular value, so they have

an implicit “for all” around them. Since their actual values do not matter, to simplify these

expressions they (and similar dummy values) can be replaced with arbitrary capital letters:

accurately_translates(compile(sP, cT, A, e1, e2), lsA, sA, B, e2, eArun).

Note that sP (when compiled) does not need to implement the whole language sA was written in, as

defined by some official language standard. Instead, a compiled form of sP only needs to

implement the syntax and semantics of the language that sA requires. This language, lsA, must

include all of the syntactic and semantic requirements necessary to correctly interpret sA; it may,

but need not, include additional requirements not required to interpret sA. This is fundamentally

the same kind of issue as described in section 5.6.4 (with sA, lsA, and the compiled sP analogous

to sP,, lsP, and cT), and the same explanation regarding language applies.

5.6.7 Definition definition_stage1

We must now begin to define the DDC process itself in this formal notation. As shown in figure

4, the executable “stage1” is created by compiling sP using cT, running on environment e1 and

targeting environment e2. We will name this definition_stage1, and it is formally notated as:

stage1 = compile(sP, cT, e1effects, e1, e2).

Combining this with sP_compiles_sA_result, we find this result which we will name as

definition_stage1_result1:

accurately_translates(stage1, lsA, sA, A, e2, eArun).

5.6.8 Definition define_exactly_correspond

There is a key relationship between the predicates “exactly_correspond” and

“accurately_translates” that has not yet been expressed, which also provides insight into what it

means when a source and executable exactly correspond. Fundamentally, if some Source (written

72

in language Lang) is compiled by a compiler that accurately translates it, then the resulting

executable exactly corresponds to the original Source. This relationship is named

define_exactly_correspond, and is so central to the notion of “exactly_correspond” that it

essentially defines it. This is expressed as:

accurately_translates(Compiler, Lang, Source, EnvEffects, ExecEnv, TargetEnv)
->

exactly_correspond(compile(Source, Compiler, EnvEffects, ExecEnv, TargetEnv),
Source, Lang, TargetEnv).

Combining this with the previous result, we can now determine a result that we will name

define_exactly_corresponds_result1:

exactly_correspond(compile(sA, stage1, A, e2, eArun), sA, lsA, eArun).

5.6.9 Definition definition_stage2

We now introduce a formal model for how the DDC process generates stage2, which compiles

source sA using the executable stage1 and targets environment eArun:

stage2 = compile(sA, stage1, e2effects, e2, eArun).

Using the previous result, we can now determine definition_stage2_result1:

exactly_correspond(stage2, sA, lsA, eArun).

5.6.10 Goal source_corresponds_to_executable

We can now prove our goal, source_corresponds_to_executable. Recall that this goal is:

(stage2 = cA) -> exactly_correspond(cA, sA, lsA, eArun).

But we already know, per definition_stage2_result1, that:

exactly_correspond(stage2, sA, lsA, eArun).

If stage2 is exactly the same as cA (the left side of the goal’s implication), then we can replace

stage2 with cA, producing:

exactly_correspond(cA, sA, lsA, eArun).

QED.

73

5.6.11 Prover9 proof of source_corresponds_to_executable

Table 2 presents the proof found by prover9 (see section 5.3 for more on the rationale).

Table 2: Proof #1 (source_corresponds_to_executable) in prover9 format
Formula Rationale

1 accurately_translates(A,B,C,D,E,F) ->
exactly_correspond(compile(C,A,D,E,F),C,B,F)

Assumption
define_exactly_correspond

2 (all A accurately_translates(cT,lsP,sP,A,e1,e2)) Assumption cT_compiles_sP

3
accurately_translates(A,lsP,sP,B,C,D) ->
accurately_translates(compile(sP,A,B,C,D),
lsA,sA,E,D,eArun)

Assumption sP_compiles_sA

4 stage2 = cA -> exactly_correspond(cA,sA,lsA,eArun) Goal source_corresponds_to_
executable

5 -accurately_translates(A,B,C,D,E,F) |
exactly_correspond(compile(C,A,D,E,F),C,B,F) Clausify 1

6 accurately_translates(cT,lsP,sP,A,e1,e2) Clausify 2

7
-accurately_translates(A,lsP,sP,B,C,D) |
accurately_translates(compile(sP,A,B,C,D),
lsA,sA,E,D,eArun)

Clausify 3

8 stage1 = compile(sP,cT,e1effects,e1,e2) Assumption definition_stage1
9 compile(sP,cT,e1effects,e1,e2) = stage1 Copy 8, flip
10 stage2 = compile(sA,stage1,e2effects,e2,eArun) Assumption definition_stage2
11 compile(sA,stage1,e2effects,e2,eArun) = stage2 Copy 10, flip
12 cA = stage2 Deny 4
13 -exactly_correspond(cA,sA,lsA,eArun) Deny 4
14 -exactly_correspond(stage2,sA,lsA,eArun) Para 12 13

15 accurately_translates(compile(sP,cT,A,e1,e2),
lsA,sA,B,e2,eArun) Resolve 7 6

16 accurately_translates(stage1,lsA,sA,A,e2,eArun) Para 9 15

17 exactly_correspond(compile(sA,stage1,A,e2,eArun),
sA,lsA,eArun) Resolve 5 16

18 exactly_correspond(stage2,sA,lsA,eArun) Para 11 17
19 $F Resolve 18 14

74

5.6.12 Discussion of proof #1

The existence of stage1 and stage2 implies termination of the compilation processes that

produced them. This doesn’t limit the proof’s utility in the real world; a compilation process that

never finished would not be considered useful, and would certainly be noticed. Termination

implies that sA and sP are computable and implementable, which in turn implies that the subset of

languages lsA and lsP correspondingly used by sA and sP are also computable and implementable.

Thus, sA cannot call impossible functions like “return_last_digit_of_pi()”. The languages lsP and

lsA may have many additional capabilities, but for DDC only the proof assumptions are required.

Reviewers often search to see if a proof works given “null” or “absurdly small” cases. Oddly

enough, the proof is still correct in these cases. It is theoretically possible that one or more of the

compilers could be a one-byte value, a one-bit value, or even null, if the underlying environment

implemented those values according to the proof assumptions. For example, an environment

could theoretically have a built-in “compile” instruction, or implement a “compile” function if it

receives an empty sequence. This is hypothetical; real environments are very unlikely to work

this way. However, there’s no need to prevent this possibility, so the proof permits it.

The goal statement compares for equality between stage2 and cA. As noted above, this requires

that equality be correctly implemented; if the equality-checking program is itself subverted, this

proof would not apply, so the equality-checking program and the environment it runs on must not

be subverted. Similarly, the values stage2 and cA that are compared must be acquired in a trusted

manner; if the programs or environment used to copy them are subverted, then again, the proof

will not apply (because the values the proof applies to might not be what is being tested).

75

Note that the converse of the proof #1’s goal does not necessarily hold. The converse is:

exactly_correspond(cA,sA,lsA,eArun) -> (stage2 = cA)

There are many reasons the converse need not be true. For example, executable cA might have

been modified by adding extra unused information at its end, or had “no-operation” statements

inserted into it that do not change the outputs it produces. Indeed, cA could have been produced

by compiling sA using a different but trustworthy compiler and environment. In all these cases, cA

could exactly correspond to sA, even though stage2 is not equal to cA. But there is a common

circumstance where stage2 and cA must be equal; showing this is true is the focus of proof #2.

5.7 Proof #2: Goal always_equal

The first proof (source_corresponds_to_executable) shows that if cA and stage2 are equal, then cA

and sA exactly correspond. However, this first proof is not practically useful if cA and stage2 are

not normally equal. So we will next prove that, under “normal conditions”, cA and stage2 are in

fact always equal. “Normal conditions” is expressed more formally below, but in particular, this

includes the presumption that the compiler executables have not been tampered with (i.e., that the

compiler executables correspond to their source code). This proof goal is named “always_equal”,

and is simply:

cA = stage2.

This second proof requires many more assumptions than the previous proof (9 instead of 5). It

reuses 4 previous assumptions: definition_stage1, definition_stage2, define_exactly_correspond,

and cT_compiles_sP. The new assumptions are definition_cA, cP_corresponds_to_sP,

define_compile, sP_portable_and_deterministic, and define_determinism, as defined below. We

will avoid making any assumptions about cGP, a possible “grandparent” compiler, since there may

not be a grandparent compiler. Proof #3, to follow, will examine the common case when there is

a grandparent compiler.

76

Interestingly, we do not need the assumption sP_compiles_sA for this proof. The assumption

definition_cA requires, as a side-effect, that sP terminate when it compiles sA. If sP terminates but

fails to compile sA, the results will still be equal; in this case the processes will produce equal

error messages, which is probably not useful but it does not invalidate the proof. If sP terminates

and successfully compiles sA, then again, the results will be equal if this section’s assumptions

hold. This would be true even if sP has one or more defects that affect compiling sA; in such a

case, if all the assumptions of proof #2 hold, then compiler-under-test cA and the DDC result

stage2 will be identical and have the same defects. Again, this does not invalidate DDC; the

purpose of DDC is to determine if source and executable correspond, not to prevent all possible

defects.

In this second proof, the predicates, functions, and assumptions will now be presented, along with

their ramifications. This will be followed by the complete prover9 proof and a discussion.

5.7.1 Reused definitions define_exactly_correspond,
definition_stage1, and definition_stage2

We will reuse several definitions. Here is definition define_exactly_correspond:

accurately_translates(Compiler, Lang, Source, EnvEffects, ExecEnv,
TargetEnv) ->

exactly_correspond(compile(Source, Compiler, EnvEffects, ExecEnv,
TargetEnv), Source, Lang, TargetEnv).

Definition definition_stage1:

stage1 = compile(sP, cT, e1effects, e1, e2).

Definition definition_stage2:

stage2 = compile(sA, stage1, e2effects, e2, eArun).

77

5.7.2 Assumption cT_compiles_sP

We will also reuse assumption cT_compiles_sP from section 5.6.4:

all EnvEffects accurately_translates(cT, lsP, sP, EnvEffects, e1, e2).

5.7.3 Predicate deterministic_and_portable

We define a new predicate:

predicate deterministic_and_portable(Source, Language, Input)

This predicate is defined to be true if, and only if, the given Source (when compiled by a correct

compiler for Language) is both:

• deterministic (when correctly compiled for an environment, and run on that environment,

it will always produce the same specific output given the same input Input), and

• portable (the above is true across the environments used by DDC and the claimed origin).

A deterministic and portable executable always produces the same outputs, given the same inputs,

in various environments; in this case, we only care if it is deterministic and portable for a given

environment, and only for a specific input (Input).

A compiler need not be deterministic. For example, when there are optimization alternatives, a

compiler could call a random number generator in the environment, and use that value to

determine which alternative to choose.

In practice, many compilers are deterministic, or can be executed in a way that makes them

deterministic, because it is much more difficult to test non-deterministic compilers. Indeed, some

compilers (such as GCC) use self-regeneration as a self-test—and such tests require determinism.

For example, GCC’s C++ compiler includes the ability to control the random number seed used

during compilation, specifically to cause its non-deterministic behavior to become deterministic.

78

One exception is embedded timestamps: Some object code formats embed compilation

timestamps in the file. If timestamps are only stored in intermediate formats, and not a final

format, an easy solution is to only compare the final results (see section 8.6).

Many real-world languages include intentionally non-portable constructs that provide direct

access to the underlying environment and/or use compiler extensions not supported by other

compilers. For example, languages may provide nonstandard methods for opening files.

However, we must compile the same program using different compilers, in potentially different

environments. Thus, we must avoid such constructs for DDC, or add those additional

requirements to the language specification and ensure that all the implementations used in DDC

and the claimed origin of the compiler support them as necessary.

5.7.4 Function run

Previously we could treat compiling as a “black box”, but for this proof more detail about

compilation is needed. In particular, we must model executing a program. Thus:

function run(Executable, Input, EnvEffects, Environment)

is a function that returns data. This data (the output) is the result of running Executable in

Environment, giving it Input and the various environmental effects EnvEffects. The parameter

“EnvEffects” models whatever the language allows the environment to vary that could have an

effect on the results of running Executable, such as random number generator values or thread

scheduling.

The results include standard out, standard error, and any files (file names, locations, and contents)

generated or modified by its execution. Since different runs could have different environmental

effects as input (e.g., the random number generator from the environment might produce

79

something different), it is possible that running the same executable with the same Input could

produce different results.

5.7.5 Function converttext

Function converttext models an unfortunate complicating issue in the real world: Different

environments may encode text in different ways. Function

function converttext(Data, Environment1, Environment2)

takes Data, where all text is in the standard text encoding of Environment1, and returns the same

Data but with all text converted to the standard text encoding of Environment2.

In particular, a new line may be encoded differently by different environments. Common

conventions, and some systems that use those conventions, include:

• Linefeed (#x0A): Unix, GNU/Linux, Mac OS X, Multics.

• Carriage Return (#x0D): Apple II Disk Operating System (DOS) and Professional Disk

Operating System (ProDOS), Mac OS version 9 and earlier.

• Carriage return + Linefeed (#x0D #x0A): Control Program for Microcomputers (CP/M),

Microsoft Disk Operating System (MS-DOS), Microsoft Windows.

• Newline NEL (#x85): IBM System/390 operating-system (OS/390) [Malaika2001].

Similarly, not all computer systems encode text characters the same way. They may use (for

example) ASCII, 8-bit (UCS)/Unicode Transformation Format UTF-815, UTF-16 (which may be

little-endian or big-endian), a locale-specific encoding, or even EBCDIC.

Since we will later compare values for exact equality, modeling these differences is necessary.

15UTF-8 is short for “8-bit UCS/Unicode Transformation Format”, where UCS is short for “Universal
Character set”. UTF-16 is short for “16-bit UCS/Unicode Transformation Format”. EBCDIC is an
abbreviation for “Extended Binary Coded Decimal Interchange Code”. As noted earlier, ASCII is short for
“American Standard Code for Information Interchange”. These terms are normally used only as acronyms.

80

5.7.6 Function extract

Function extract accepts data, and returns a subset of that data:

function extract(Data)

More specifically, function extract() extracts only the executable produced by a compiler, and

silently throws away the rest (e.g., warning and error reports made during the compilation

process). A compilation process runs a compiler, and a compiler produces many outputs – but we

only want the data that will be later used for execution. In a typical compilation environment,

extract() will produce just the generated executable files, and not outputs to standard out, standard

error, and/or log files.

5.7.7 Function retarget

Function retarget accepts source and target, and returns possibly modified source:

function retarget(Source, Target)

Retarget represents any modifications to the source code Source that are necessary to change it so

it will compile to run on the target environment Target. In many circumstances, Source will

include various flags to the compiler that determine what environment the compiled executable

will run on. If a different execution environment is to be used, the Source may need to be

modified. If no such modifications are needed, retarget simply returns Source.

5.7.8 Assumption sP_portable_and_deterministic

We will assume that source sP, when compiled, describes a portable and deterministic program,

when used to compile sA (once it is retargeted to generate code for eArun):

portable_and_deterministic(sP, lsP, retarget(sA, eArun)).

81

This means that:

• Source sP must avoid all non-portable capabilities of language lsP, or use them only in

ways that will not affect the output of the program when compiling sA.. For example, if a

“+” operator is used in the source code, then the language must include this operator, the

language must provide the semantics required by the source code (e.g., “add two

integers” if sP requires this meaning), and the language must require support for the

domain of values used as inputs to the operator when processing Input. As noted in

section 5.6.4.1, the language noted here is not necessarily an official standard; it might,

for example, be a subset and/or superset of a official standard.

• Source sP may use constructs that are individually non-deterministic (such as threads with

non-deterministic scheduling), but if it does it must use mechanisms to make to ensure

that the output will be the same on each execution given the same input (for example, it

could use locks to ensure that thread scheduling variation does not cause variation in the

results). In some cases, setting the random number seed and algorithm for “randomness”

may be necessary to ensure determinism.

Note that we do not require that cT or the grandparent compiler cGP (if it exists) be portable or

deterministic. They could be portable and/or deterministic, and often will be, but this is not

necessary.

It is possible that some constructs in sP are non-deterministic or non-portable; this is acceptable as

long as they do not affect the use of sP to compile the retargeted sA. However, even if sP includes

non-deterministic or non-portable constructs, definition_stage1 (see section 5.7.1) still requires

that the trusted compiler cT must be able to compile sP.

82

5.7.9 Definition define_portable_and_deterministic

Under certain conditions, the same source code can be compiled by different compilers, and when

the different executables are run with the same inputs, they must produce the same outputs. More

precisely, if the source code uses only the portable and deterministic capabilities of a language

when properly compiled and run to process a specific input Input, then given two executables that

exactly correspond to that same source code (possibly running in different environments), then

those executables—when given the same input Input—will produce the same output (other than

text format differences). This is expressed as follows:

 (portable_and_deterministic(Source, Language, Input) &
 exactly_correspond(Executable1, Source, Language, Environment1) &
 exactly_correspond(Executable2, Source, Language, Environment2)) ->
 (converttext(run(Executable1, Input, EnvEffects1, Environment1),
 Environment1, Target) =
 converttext(run(Executable2, Input, EnvEffects2, Environment2),
 Environment2, Target))

This is perhaps best explained by a sequence of two examples. Let us first consider this simple C

program, which computes 2+2 and prints the result:

#include <stdio.h>
main() {

printf("%d\n", 2+2);
}

Now imagine two different properly-working C compilers given this code. The two executables

produced by the two different C compilers will almost certainly be different. However, running

these two executables on their respective environments must produce the same result “4” (once

text encoding is taken into account).

Now consider this program; it reads a number, adds one to it, and prints the result:

#include <stdio.h>
main() {

int x;
scanf("%d", &x);
x++;
printf("%d\n", x);

}

83

Again, after using different properly-working C compilers, the two executables produced will

almost certainly be different. Will running the two executables always produce the same outputs?

It turns out that this depends on the inputs. Running these two executables on their respective

environments, with the same input “5”, must produce the same result “6” (once text encoding is

taken into account), because the language definition requires that implementations be able to

correctly read in 5, add one (producing 6), and be able to print it.

However, this is not necessarily true with a different input. The C language specification only

guarantees that an “int” can store and process integers within the range of a 16-bit twos-

complement signed integer [ISO1999, section 5.2.4.2.1]. Thus, if 2147483648 (231) is provided

as input, we cannot be certain that the executables will do the same thing. It would be quite

possible for the different executables to produce different results in such cases, because

processing such input is not within the portable range defined by the language.

In this particular example, we could change to another language which required this particular

input to be processed identically (e.g., the language could be “Standard C, but int must be at least

64 bits long”). In practice, many language specifications include limits on what is portable and

deterministic, and the inputs must not exceed those limits for the result to be portable and

deterministic.

5.7.10 Assumption cP_corresponds_to_sP

How was compiler-under-test cA created? The putative origin of cA is that it was compiled by

compiler cP, and that cP’s executable exactly corresponds to source sP. For the moment, we will

simply assume this, as this is true for the benign case we are considering in proof #2:

exactly_correspond(cP, sP, lsP, eA).

84

In many cases cP will have been created by compiling sP using some grandparent compiler cGP.

Proof #3 will show that this assumption (cP_corresponds_to_sP) can be proven given certain

other plausible assumptions, including the existence of a grandparent compiler. However, by

making this a simple assumption in proof #2, proof #2 is more general. For example, it is

possible that cP was created by hand-translating sP into an executable; in this case, there may be

no executable that is the grandparent compiler (since a human acted as the grandparent compiler),

yet it may still be possible to accept this assumption.

5.7.11 Definition define_compile

In the previous proof we had simply accepted “compile” as a function that produced data:

compile(Source, Compiler, EnvEffects, RunOn, Target)

This represents compiling Source with the Compiler, running it in environment RunOn, but

targeting the result for environment Target.

However, for this proof, more detail about the compilation process is needed, so the compilation

process will now be modeled using more primitive functions:

compile(Source, Compiler, EnvEffects, RunOn, Target) =
 extract(converttext(run(Compiler, retarget(Source, Target),
 EnvEffects, RunOn), RunOn, Target)).

This is easier to explain by beginning on the right-hand-side, going from the inside expressions

out. First, the Source is retargeted so that it will compile for environment Target (this typically

involves changing compiler flags so that they will specify the new target). Then run the Compiler

on the environment RunOn with the retargeted Source code as input; note that if Compiler is a

non-deterministic compiler, the environmental EnvEffects may have an effect on the results. The

output will probably include text results (such as warnings, errors, and possibly the resulting

executable depending on the kind of compiler it is). This text is then converted to Target’s

85

standard text format. Finally, the portions of the compilation results that can be run later are

extracted; the rest of the material (such as warning text) is thrown away.

In practice, converttext only needs to be applied to text that will be extracted. If it will be thrown

away, then there’s no need to actually perform the conversion. But this is merely an optimization,

and not necessary for the proof; it is easier to model as shown above.

5.7.12 Definition definition_cA

How was compiler-under-test cA generated? Putatively it was generated by compiling source sA,

using compiler cP. This is easily modeled, in a manner similar to stage1 and stage2:

cA = compile(sA, cP, eAeffects, eA, eArun).

It’s quite possible that this assumption is not true, e.g., perhaps the executable of the compiler-

under-test was recently replaced by a corrupt executable (such as a maliciously corrupted

executable). But for proof #2, we are considering what happens in the benign circumstance

(where the putative origins are true), to show that a benign environment must produce a match.

5.7.13 Goal always_equal

Recall that the goal is to prove, given the preceding assumptions:

cA = stage2.

5.7.14 Prover9 proof of always_equal

Table 3 presents the proof found by prover9.

86

Table 3: Proof #2 (always_equal) in prover9 format
Formula Rationale

1
portable_and_deterministic(A,B,C) & exactly_correspond(D,A,B,E) &
exactly_correspond(F,A,B,V6) -> converttext(run(D,C,V7,E),E,V8) =
converttext(run(F,C,V9,V6),V6,V8)

Assumption
define_
portable_
and_
deterministic

2 accurately_translates(A,B,C,D,E,F) ->
exactly_correspond(compile(C,A,D,E,F),C,B,F)

Assumption
define_
exactly_
correspond

3 (all A accurately_translates(cT,lsP,sP,A,e1,e2))
Assumption
cT_
compiles_sP

4 cA = stage2 Goal
always_equal

5 portable_and_deterministic(sP,lsP,retarget(sA,eArun))

Assumption
sP_portable_
and_
deterministic

6
-portable_and_deterministic(A,B,C) | -exactly_correspond(D,A,B,E) |
-exactly_correspond(F,A,B,V6) | converttext(run(F,C,V7,V6),V6,V8) =
converttext(run(D,C,V9,E),E,V8)

Clausify 1

7 accurately_translates(cT,lsP,sP,A,e1,e2) Clausify 3

8 -accurately_translates(A,B,C,D,E,F) |
exactly_correspond(compile(C,A,D,E,F),C,B,F) Clausify 2

9 exactly_correspond(cP,sP,lsP,eA)

Assumption
cP_
corresponds_
to_sP

10 compile(A,B,C,D,E) = extract(converttext(run(B,retarget(A,E),C,D),D,E))

Assumption
cP_
corresponds_
to_sP

11 stage1 = compile(sP,cT,e1effects,e1,e2)
Assumption
definition_
stage1

12 stage1 = extract(converttext(run(cT,retarget(sP,e2),e1effects,e1),e1,e2)) Para 10 11
13 extract(converttext(run(cT,retarget(sP,e2),e1effects,e1),e1,e2)) = stage1 Copy 12, flip

14 stage2 = compile(sA,stage1,e2effects,e2,eArun)
Assumption
definition_
stage2

15 stage2 =
extract(converttext(run(stage1,retarget(sA,eArun),e2effects,e2),e2,eArun)) Para 10 14

87

16 cA = compile(sA,cP,eAeffects,eA,eArun)
Assumption
definition_
cA

17 cA = extract(converttext(run(cP,retarget(sA,eArun),eAeffects,eA),eA,eArun)) Para 10 16
18 cA != stage2 Deny 4

19 extract(converttext(run(cP,retarget(sA,eArun),eAeffects,eA),eA,eArun)) !=
stage2 Para 17 18

20 extract(converttext(run(cP,retarget(sA,eArun),eAeffects,eA),eA,eArun)) !=
extract(converttext(run(stage1,retarget(sA,eArun),e2effects,e2),e2,eArun)) Para 15 19

21 extract(converttext(run(stage1,retarget(sA,eArun),e2effects,e2),e2,eArun)) !=
extract(converttext(run(cP,retarget(sA,eArun),eAeffects,eA),eA,eArun)) Copy 20, flip

22
-exactly_correspond(A,sP,lsP,B) | -exactly_correspond(C,sP,lsP,D) |
converttext(run(C,retarget(sA,eArun),E,D),D,F) =
converttext(run(A,retarget(sA,eArun),V6,B),B,F)

Resolve 5 6

23 exactly_correspond(compile(sP,cT,A,e1,e2),sP,lsP,e2) Resolve 7 8

24 exactly_correspond(extract(converttext(run(cT,retarget(sP,e2),A,e1),e1,e2)),
sP,lsP,e2) Para 10 23

25 exactly_correspond(stage1,sP,lsP,e2) Para 13 24

26
-exactly_correspond(A,sP,lsP,B) |
converttext(run(A,retarget(sA,eArun),C,B),B,D) =
converttext(run(cP,retarget(sA,eArun),E,eA),eA,D)

Resolve 22 9

27 converttext(run(stage1,retarget(sA,eArun),A,e2),e2,B) =
converttext(run(cP,retarget(sA,eArun),C,eA),eA,B)

Resolve 26
25

28 compile(sA,stage1,A,e2,eArun) =
extract(converttext(run(cP,retarget(sA,eArun),B,eA),eA,eArun)) Para 27 10

29 extract(converttext(run(stage1,retarget(sA,eArun),A,e2),e2,eArun)) =
extract(converttext(run(cP,retarget(sA,eArun),B,eA),eA,eArun)) Para 10 28

30 $F Resolve 29
21

5.7.15 Discussion of proof #2

Note that proof #2’s goal could be true, even if some of proof #2’s assumptions (above) are false.

First, note that the goal of proof #2 is:

stage2 = cA.

This equality could, in theory, have occurred by other means. As an extreme example, perhaps cA

was created by randomly generating data of the same length and then using it as an executable.

88

In practice, even minor changes (other than changing comments) that invalidate any of proof #2’s

assumptions will tend to make this goal fail. As shown in chapter 7, DDC is extremely sensitive

to even very minor deviations that make one of proof #2’s assumptions false.

Since cA=stage2 when proof #2’s assumptions are true, then if cA≠stage2, then at least one of the

assumptions of proof #2 must be false. For example, if cA≠stage2, perhaps compiler executable cP

is corrupted; this would mean assumption cP_exactly_corresponds is false. Similarly, perhaps

compiler executable cA is corrupted (e.g., it was replaced by some corrupt executable); this would

mean that assumption definition_cA is false. If we only know that cA≠stage2, we cannot

determine from this proof which assumption(s) are false. However, once we know that

cA≠stage2, we can then try to obtain other information to determine the cause(s).

Note that this proof permits sP≠sA and cP≠cA, but it does not require it. Thus, it’s quite possible

that sP=sA and/or cP=cA.

5.8 Proof #3: Goal cP_corresponds_to_sP

Proof #2 is intentionally designed to not require that a grandparent compiler cGP exist in the

putative origins of cA. But having a grandparent compiler is a common circumstance, and in this

circumstance, one of the assumptions of proof #2 can be proved using other assumptions that may

be easier to confirm.

Proof #2 depended on assumption cP_corresponds_to_sP (see section 5.7.10):

exactly_correspond(cP, sP, lsP, eA).

If a putative grandparent compiler cGP does exist, this assumption is easily proven given some

different assumptions. Simply reuse define_exactly_correspond as already defined, and add

definition definition_cP and assumption cGP_compiles_sP as described below.

89

5.8.1 Definition definition_cP

First, we must define how cP was putatively generated – by grandparent compiler cGP:

cP = compile(sP, cGP, ePeffects, eP, eA).

Note the strong similarity to definition_cA used earlier in section 5.7.12.

5.8.2 Assumption cGP_compiles_sP

We also need to assume that the grandparent compiler cGP will accurately translate the source

code sP:

all EnvEffects accurately_translates(cGP, lsP, sP, EnvEffects, eP, eA).

Note the strong similarity to cT_compiles_sP in section 5.6.4.

5.8.3 Goal cP_corresponds_to_sP

Given define_exactly_correspond, definition_cP, and cGP_compiles_sP, as described above, the

goal is trivially proved by prover9 (as shown below). Recall that the goal is:

exactly_correspond(cP, sP, lsP, eA).

5.8.4 Prover9 proof of cP_corresponds_to_sP

Table 4 presents the proof found by prover9.

90

Table 4: Proof #3 (cP_corresponds_to_sP) in prover9 format
Formula Rationale

1 (all A accurately_translates(cGP,lsP,sP,A,eP,eA)) Assumption
cGP_compiles_sP

2 accurately_translates(A,B,C,D,E,F) ->
exactly_correspond(compile(C,A,D,E,F),C,B,F)

Assumption define_
exactly_correspond

3 exactly_correspond(cP,sP,lsP,eA) Goal cP_corresponds_
to_sP

4 -accurately_translates(A,B,C,D,E,F) |
exactly_correspond(compile(C,A,D,E,F),C,B,F) Clausify 2

5 accurately_translates(cGP,lsP,sP,A,eP,eA) Clausify 1
6 cP = compile(sP,cGP,ePeffects,eP,eA) Assumption definition_cP
7 -exactly_correspond(cP,sP,lsP,eA) Deny 3
8 -exactly_correspond(compile(sP,cGP,ePeffects,eP,eA),sP,lsP,eA) Para 6 7
9 exactly_correspond(compile(sP,cGP,A,eP,eA),sP,lsP,eA) Resolve 4 5
10 $F Resolve 9 8

5.8.5 Discussion of proof #3

Proof #3 shows that, when a grandfather compiler is used as part of a benign environment, an

assumption of proof #2 (cP_corresponds_to_sP) is true.

91

6 Methods to increase diversity

As discussed in section 4.3, DDC must be executed using only “trusted” processes and programs.

Something is trusted to the extent that there is justified confidence that it does not have triggers

and payloads that would affect the results of DDC.

This confidence can be gained in a variety of ways. One method to gain such confidence is to

perform a complete formal proof of the compiler executable cT and of the environments used in

DDC, along with evidence that what actually runs is what was proved. But such proofs are

difficult to perform with compilers typically used in industry. Another method to gain such

confidence is to re-apply DDC on compiler cT and/or the DDC environments; this can help, but

re-applying DDC would require the use of yet another trusted compiler and environments, and

this application of DDC would repeat until there was (1) a “final” trusted compiler and

environments, or (2) a loop of trusted compilers and environments. In either case, at that point

some other method is needed to increase confidence in the trusted compiler and environments.

A simple method to gain such confidence is through diversity. Diversity can greatly reduce the

likelihood that trusted compiler cT and the DDC environments have relevant triggers and

payloads, often at far less cost than other approaches. There are many ways we can gain

diversity; these include diversity in compiler implementation, in time, in environment, and in

input source code. These can be combined to further increase confidence that relevant triggers

and payloads will not activate.

92

6.1 Diversity in compiler implementation

Compiler cT’s executable could be a completely different implementation than compiler cA or cP.

This means it would have no (or little) shared code or data structures. It would be best if the

source code of cT did not have a common ancestor with cA or cP, since having a common ancestor

greatly increases the likelihood of shared code or data structures. Using a completely different

implementation reduces the risk that cT includes triggers or payloads that affect cP or cA.

Compiler cT’s executable could include triggers and payloads for compilers other than cT, but this

is less likely.

Ideally, no previous version of compiler cT would have been compiled by any version of compiler

cA or cP, even in cT’s initial bootstrap. This is because compiler cA or cP could insert into the

executable code some routines to check for any processing of compiler cA or cP so that it can later

“re-infect” itself. This kind of attack is difficult to do, especially since bootstrapping is usually

done very early in a compiler’s development and an attacker may not even be aware of compiler

cT’s existence. One of the most obvious locations where this might be practical might be in the

input/output (I/O) routines. However, I/O routines are more likely to be viewed at the assembly

or machine level than some other routines (e.g., to do performance analysis), so an attacker risks

discovery if they subvert I/O routines.

6.2 Diversity in time

If compiler cT and the DDC environment were developed long before the compiler cP and cA, and

they do not share a common implementation heritage, it is improbable that compiler cT or its

environment would include relevant triggers for a not-yet-implemented compiler. Magdsick

makes a similar point [Magdsick2003]. In theory, a compiler author could attempt to develop a

newer compiler’s source code so that it would be subverted by older compiler executables, but

93

this requires control over the newer compiler’s source code, explicit knowledge of the triggers

and payloads of the older compiler, and triggers and payloads in the older compiler that would be

relevant to a newer, different compiler.

The reverse (using a newer compiler executable to check an older compiler executable) gains less

confidence. This is because it is easier for a recently-released compiler executable to include

triggers and payloads for many older compilers, including completely different compilers.

Nevertheless, this can still increase confidence somewhat, since to avoid detection by DDC the

attacker must successfully subvert multiple compiler executables.

Diversity in time can only provide significant confidence if it can be clearly verified that the

“older” materials are truly the ones that existed at the earlier time. This is because a resourceful

attacker could tamper with those copies if given an opportunity to do so. Instead, protected

copies of the original media should be preferred to reduce the risk of tampering. Multiple

independently-maintained copies can be compared with each other to verify that the data used is

correct. Cryptographic hashes can be used to verify the media; multiple hash algorithms should

be used, in case a hash algorithm is broken.

An older executable version of compiler cA or cP can be used as compiler cT if there is reason to

believe that the older version is not corrupt or that any Trojan horse in the older version of cA will

not be triggered by sA. Note that this is a weaker test; the common ancestor could have been

subverted. This technique gives greater confidence if the changes in the compiler have been so

significant that the newer version is in essence a different compiler, but it would be best if

compiler cT were truly a separate implementation.

94

6.3 Diversity in environment

Different environments could be used in the DDC process than were used for the original

generation of cA. The term “environment” here means the entire infrastructure supporting the

compiler including the CPU architecture, operating system, supporting libraries, and so on.

Using a completely different environment counters Trojan horses whose triggers and payloads are

actually in the executables of the environment, as well as countering triggers and payloads that

only work on a specific operating system or CPU architecture.

These benefits could be partly achieved through emulation of a different system. There is always

the risk that the emulation system or underlying environment could be subverted specifically to

give misleading results, but attackers will often find this difficult to achieve, particularly if the

emulation system is developed specifically for this test (an attacker might have to develop the

attack before the system was built!).

In any case, the environment used to execute the DDC process should be isolated from other

tasks. It should not be running any other processes (which might try to use kernel vulnerabilities

to detect a compilation and subvert it), and it should have limited (or no) network access.

6.4 Diversity in source code input

Another way to add diversity would be to use mutated source code [Draper1984]

[McDermott1988]. The purpose of mutating source code is to make it less likely that triggers

designed to attack the compilation of sP or sA will activate, and if they do, to reduce the likelihood

that any payloads will be effective.

In terms of DDC, compiler cT would become a source code transform (the mutator), a compiler

(possibly an original compiler) cX, and possibly a postprocessing step. These mutations could be

95

implemented by automated tools, or even manually. The resulting cT must be trusted, so trust

must be given to the mutator(s), and the mutators must cause sufficient change so that any

triggers or payloads in cX will not have an effect when used as part of DDC.

There are two major types of mutations of source code: semantics-preserving and non-semantics

preserving:

• In semantics-preserving mutations, the source code is changed to an equivalent program

(that is, it will continue to produce the same outputs given the same inputs). This could

include mutations such as renaming items (such as variables, functions, and/or

filenames), reordering statements where the order is irrelevant, and regrouping

statements. It can also include much more substantive changes, such as translating the

source code into a different programming language. Even trivial changes, such as

changing whitespace, slightly increases diversity (though typically not enough by itself to

justify a claim that all potential triggers and payloads are disabled). Forrest discusses

several methods for introducing diversity [Forrest1997].

• In non-semantics-preserving mutations, the original semantics of the source code as

presented to the compiler are not preserved. Instead, the goal is to preserve the necessary

semantics of the source code when executed with the addition of preprocessing of its

input to the execution and/or postprocessing of the execution output. Often this involves

adding extraneous functionality to the source code, whose output is removed by the

postprocessor, in the hope that this will cause triggers and payloads to fail. For example,

the mutator may insert an additional text formatter that generates formatted output as well

as an executable; the postprocessor must then remove or throw out that extraneous

information. One challenge of this approach is that since semantics are no longer

96

preserved, the postprocessing must remove changes that would affect DDC. McDermott

discusses the advantage of this approach [McDermott1988].

Mutations can also be used to determine the specification of language lsP with greater precision16.

Presume that we have a non-mutated sP and that we can verify cA using DDC. We can then apply

successive semantics-preserving mutations to sP (e.g., focusing on areas that the language

specification leaves undefined) and see if they cause a false negative. If a mutation causes a false

negative, that mutation reveals an undocumented requirement of language lsP.

16My thanks to Aaron Hatcher, who made this observation.

97

7 Demonstrations of DDC

The formal proof only shows that if something could be done, it would produce certain specific

results. This chapter documents several demonstrations showing that DDC can be performed in

the real world, and is thus a practical technique. This chapter presents results from tcc (a small C

compiler), ported versions of Goerigk’s Lisp compilers (one of which is known to be a

maliciously corrupted executable), and the widely-used industrial-strength GNU Compiler

Collection (GCC) C compiler. In some cases, it will be important to track certain libraries

separately from the “compiler source code” as it is traditionally defined; in such cases, the figures

will show them as separate inputs.

7.1 tcc

Before [Wheeler2005], there had been no public evidence that DDC had been used. One 2004

GCC mailing list posting stated, “I’m not aware of any ongoing effort,” [Lord2004]; another

responded, “I guess we all sorta hope someone else is doing it.” [Jendrissek2004]. This section

describes its first demonstration (from [Wheeler2005]).

A public demonstration requires a compiler whose source code is publicly available. Other ideal

traits for the initial test case included being relatively small and self-contained, running quickly

(so that test runs would be rapid), having an open source software license (so the experiment

could be repeated and changes could be publicly redistributed [Wheeler2005]), and being easily

compiled by another compiler. The compiler needed to be relatively defect-free, since defects

98

would interfere with these tests. The Tiny C Compiler, abbreviated as TinyCC or tcc, was chosen

as it appeared to meet these criteria.

The compiler tcc was developed by Fabrice Bellard and is available from its website at

http://www.tinycc.org/. This project began as the Obfuscated Tiny C Compiler, a very small C

compiler Bellard wrote to win the International Obfuscated C Code Contest in 2002. He then

expanded this small compiler so that it now supports all of American National Standards Institute

(ANSI) C, most of the newer International Organization for Standardization (ISO) (sic) C99

standard, and many GNU C extensions including inline assembly. The compiler tcc appeared to

meet the requirements given above. In addition, tcc had been used to create “tccboot,” a Linux

distribution that first booted the compiler and then recompiled the entire kernel as part of its boot

process. This capability to compile almost all code at boot time could be very useful for future

related work, and suggested that the compiler was relatively defect-free.

The following sub-sections describe the test configuration, the DDC process, problems with

casting 8-bit values and long double constants, and final results.

7.1.1 Test configuration

All tests ran on an x86 system running Red Hat Fedora Core 3. This included Linux kernel

version 2.6.11-1.14_FC3 and GCC version 3.4.3-22.fc3. GCC was both the bootstrap compiler

and the trusted compiler for this test; tcc was the simulated potentially corrupt compiler.

First, a traditional chain of recompilations was performed using tcc versions 0.9.20, 0.9.21, and

0.9.22. After bootstrapping, a compiler would be updated and used to compile itself. Their gzip

compressed tar files have the following Secure Hash Algorithm (SHA) values using SHA-1 (these

are provided so others can repeat this experiment):

99

http://www.tinycc.org/

6db41cbfc90415b94f2e53c1a1e5db0ef8105eb8 0.9.20
19ef0fb67bbe57867a590d07126694547b27ef41 0.9.21
84100525696af2252e7f0073fd6a9fcc6b2de266 0.9.22

As is usual, any such sequence must start with some sort of bootstrap of the compiler. GCC was

used to bootstrap tcc-0.9.20, causing a minor challenge: GCC 3.4.3 would not compile tcc-0.9.20

directly because GCC 3.4.3 added additional checks not present in older versions of GCC. In tcc-

0.9.20, some functions are declared like this, using a GCC extension to C:

void *__bound_ptr_add(void *p, int offset) __attribute__((regparm(2)));

but the definitions of those functions in tcc’s source code omit the __attribute__((regparm(...))).

GCC 3.4.3 perceives this as inconsistent and will not accept it. Since this is only used by the

initial bootstrap compiler, we can claim that the bootstrap compiler has two steps: a preprocessor

that removes these regparm statements, and the regular GCC compiler. The regparm text is only

an optimization with no semantic change, so this does not affect our result.

This process created a tcc version 0.9.22 executable file which we have good reasons to believe

does not have any hidden code in the executable, so it can be used as a test case. Now imagine an

end-user with only this executable and the source code for tcc version 0.9.22. This user has no

way to ensure that the compiler has not been tampered with (if it has been tampered with, then its

executable will be different, but this hypothetical end-user has no “pristine” file to compare

against). Would DDC correctly produce the same result?

7.1.2 Diverse double-compiling tcc

Real compilers are often divided into multiple pieces. Compiler tcc as used here has two parts:

the main compiler (file tcc) and the compiler run-time library (file libtcc1.a; tcc sometimes copies

portions of this into its results). For purposes of this demonstration, these were the only

components being checked; everything else was assumed to be trustworthy for this simple test

100

(this assumption could be removed with more effort). The executable file tcc is generated from

the source file tcc.c and other files; this set is notated stcc. Note: the tcc package also includes a

file called tcclib, which is not the same as libtcc1.

101

Figure 5: Diverse double-compiling with self-regeneration check, using tcc

slibtcc1

stcc

0:0

0:1

c(stcc,tcc) c(slibtcc1,tcc)

slibtcc1

stcc

gcc

1:0

1:1

c(stcc,gcc) c(slibtcc1,gcc)

1:0

1:1

c(stcc,c(stcc,gcc)) c(slibtcc1,c(slibtcc1,gcc)

slibtcc1

stcc

Stage 1

tcc libtcc1

Stage 2

Self-regeneration

Diverse Double-
compile

C
om

pare1
C

om
pare2

Figure 5 shows the process used to perform DDC with compiler tcc. First, a self-regeneration test

was performed to make sure we could regenerate files tcc and libtcc1; this was successful. Then

DDC was performed. Notice that stages one and two, which are notionally one compilation each,

are actually two compilations each when applied to compiler tcc because we must handle two

components in each stage (in particular, we must create the recompiled run-time before running a

program that uses it).

One challenge is that the run-time code is used as an archive format (“.a” format), and this format

includes a compilation timestamp of each component. These timestamps will, of course, be

different from any originals unless special efforts are made. Happily, the run-time code is first

compiled into an ELF .o format (which does not include these timestamps), and then transformed

into an archive format using a trusted program (ar). So, for testing purposes, the libtcc1.o files

were compared and not the libtcc1.a files.

Unfortunately, when this process was first tried, the DDC result did not match the result from the

chain of updates, even when only using formats that did not include compilation timestamps.

After much effort this was tracked to two problems: a compiler defect in sign-extending values

cast to 8-bit values, and uninitialized data used while storing long double constants. Each of

these issues is discussed next, followed by the results after resolving them.

7.1.3 Defect in sign-extending cast 8-bit values

A subtle defect in tcc caused serious problems. The defect occurs if a 32-bit unsigned value is

cast to a signed 8-bit value, and then that result is compared to a 32-bit unsigned value without

first storing the result in a variable (which should sign-extend the 8-bit value). Here is a brief

description of why this construct is used, why it is a defect, and the impact of this defect.

102

The x86 processor machine instructions can store 4 byte constants as 4 bytes, but since programs

often use constants in the range -128..127, constants in this range can also be stored in a shorter

1-byte format. Where possible, tcc tries to use the shorter form, using statements like this to

detect them (where e.v is of type uint32, an unsigned 32-bit value):

if (op->e.v == (int8_t)op->e.v && !op->e.sym) {

Unfortunately, the value cast to (int8_t) is not sign-extended by tcc version 0.9.22 when

compared to an unsigned 32-bit integer. Version 0.9.22 does drop the upper 24 bits on the first

cast to the 8-bit signed integer, but it fails to sign-extend the remaining 8-bit signed value unless

the 8-bit value is first stored in a variable. This is a defect, at least because tcc’s source code

depends on a drop with sign-extension and tcc is supposed to be self-hosting. It is even more

obvious that this is a defect because using a temporary variable to store the intermediate result

does enable sign-extension. This is documented as a known defect in tcc 0.9.22’s own TODO

documentation, though this was only discovered after laboriously tracking down the problem.

According to Kernighan [Kernighan1998] section A6.2 and the ISO/IEC C99 standard section

6.3.1.3 [ISO1999], converting to a smaller signed type is implementation-defined, but conversion

of that to a larger unsigned value is required to sign-extend. Note that GCC does do the drop and

sign-extension (as tcc’s author expects).

This defect results in incorrect code being generated by tcc 0.9.22 if it is given values in the range

0x80..0xff in this construct. But when compiling itself, tcc merely generates slightly longer code

than necessary in certain cases. Thus, a GCC-compiled tcc generates code of this form (where 3-

byte codes are used) when compiling some inline assembly in the tcc run-time library libtcc1:

103

1b5: 2b 4d dc sub 0xffffffdc(%ebp),%ecx
1b8: 1b 45 d8 sbb 0xffffffd8(%ebp),%eax

But a tcc-compiled tcc incorrectly chooses the “long” form of the same instructions (which have

the same effect—note that the disassembled instructions are the same but the machine code is

different):

1b5: 2b 8d dc ff ff ff sub 0xffffffdc(%ebp),%ecx
1bb: 1b 85 d8 ff ff ff sbb 0xffffffd8(%ebp),%eax

This defect in sign-extension causes the failure of assumption cGP_compiles_sP (see section

5.8.2), which requires that the grandparent compiler accurately compile source sP. This is a key

assumption of proof #3; since this assumption is not true, the goal of proof #3

(cP_corresponds_to_sP) need not hold. Since cP_corresponds_to_sP is an assumption of proof

#2, the goal of proof #2 (always_equal) need not hold in this situation.

To resolve this issue, tcc was modified slightly so it would store such intermediate values in a

temporary variable, avoiding the defect; a better long-term solution would be to fix the defect.

Note that if the grandparent compiler did accurately compile source code sP, then the DDC

technique would have correctly reported that the source and executable exactly corresponded,

even though both source code sP and sA (which are equal in this case) incorrectly implemented the

language. DDC does not necessarily report on whether or not the source code correctly

implements the applicable languages; it merely reports if source and executable correspond when

its assumptions are true.

As with any test, merely passing this test (or any other single test) does not show that the

compiler-under-test works correctly under all possible inputs. Nevertheless, this example shows

that DDC can be a useful test for unintentional compiler defects—small defects that might not be

noticed by other tests may immediately surface when using DDC.

104

7.1.4 Long double constant problem

Another problem resulted from how tcc outputs long double constants. The tcc outputs floating

point constants in the “data” section, but when tcc compiles itself, the tcc.c line:

if (f2 == 0.0) {

outputs inconsistent data section values to represent 0.0. The tcc compiled by GCC stores 11

0x00 bytes followed by 0xc9, while tcc compiled by itself generates 12 0x00 bytes. Because f2

has type “long double,” tcc eventually stores this 0.0 in memory as a long double value. The

problem is that tcc’s “long double” uses only 10 bytes, but it is stored in 12 bytes, and tcc’s

source code does not initialize the extra 2 bytes. The two excess “junk” bytes end up depending

on the underlying environment, causing variations in the output [Dodge2005]. In normal

operation these bytes are ignored and thus cause no problems.

These tcc “junk” bytes cause a failure in proof #2 assumption sP_portable_and_deterministic (see

section 5.7.3). Since the values aren’t set, there is no guarantee by the language that the results

match between implementations. Depending on the compiler implementations, this may also

cause a failure in proof #2 assumption sP_deterministic. Thus, the results of proof #2 do not

apply to this case.

To resolve this, the value “0.0” was replaced with the expression (f1-f1), since f1 is a long double

variable known to have a numeric value at that point. This is semantically the same and

eliminated the problem. A better long-term solution for tcc would be to always set these “excess”

values to constants (such as 0x00).

105

7.1.5 Final results with tcc demonstration

After patching tcc 0.9.22 as described above, and running it through the processes described

above, exactly the same files were produced through the chain of updates and through DDC. This

is shown by these SHA-1 hash values for the compiler and its run-time library, which were

identical for both processes:

c1ec831ae153bf33bff3df3c248b12938960a5b6 tcc
794841efe4aad6e25f6dee89d4b2d0224c22389b libtcc1.o

But can we say anything about unpatched tcc 0.9.22? We can, once we realize that we can (for

test purposes) pretend that the patched version came first, and that we then applied changes to

create the unpatched version. Since we have shown that the patched version’s source accurately

represents the executable identified above, we only need to examine the effects of a reversed

change that “creates” the unpatched version. Visual inspection of the reversed change quickly

shows that it has no triggers and payloads. Thus, we can add one more chain from the trusted

compiler to a “new” version of the compiler that is the untouched tcc-0.9.22. We must compile

again, because of the change in semantics due to the sign-extension bug. In the end, the

following SHA-1 hash values are the correct executables for tcc-0.9.22 on an x86 in this

environment when tcc is self-compiled:

d530cee305fdc7aed8edf7903d80a33b6b3ee1db tcc
42c1a134e11655a3c1ca9846abc70b9c82013590 libtcc1.o

7.2 Goerigk Lisp compilers

A second demonstration of DDC using a small compiler was performed using a pair of Lisp

compilers developed in [Goerigk2000] and [Goerigk2002]. This demonstrated that DDC can be

applied to languages other than C, and that it can detect corrupted compilers.

106

Goerigk developed both “correct” and “incorrect” compilers (Goerigk’s terminology) using

ACL2, a theorem-prover supporting a Common-Lisp-like language. Goerigk also developed an

abstract machine simulator to run the code produced by the compilers. Using DDC on this pair of

compilers demonstrates (1) the ability of DDC to detect a maliciously corrupted compiler,

including the differences in the corrupted compiler, (2) reconfirm the ability of DDC to detect the

correct compiler executable, and (3) that DDC does not require C; these compilers are written in,

and support, a LISP-based language.

To perform this demonstration, the compilers and virtual machine implementation originally

written by Goerigk were first ported to Common Lisp. The compilers were originally written in

ACL2, which is similar but not identical to Common Lisp. There are far more Common Lisp

implementations than ACL2 implementations, so porting it to Common Lisp enabled the use of

many alternative compilers. This port required removing uses of “defthm” (define theorem) and

mutual recursion declarations (ACL2 requires all mutually-recursive functions to be specially

declared; Common Lisp has no such requirement). A few ACL2-unique functions were rewritten

in Common Lisp, to allow the existing code to run: LEN (length), ZP (returns true if parameter X

is not an integer, or if X is integer and X=0), TRUE-LISTP (returns True if its argument is a list

that ends in, or equals, nil), and ACL2-NUMBERP (is value a number). In addition, the

“execute” command was renamed because on some Common Lisp implementations that is a

predefined function name. The GNU Clisp implementation was then used to run the tests, though

any Common Lisp implementation would have served.

As expected, both the correct and incorrect compilers would produce correct code for a simple

sample program (in this case, for a factorial function). Both could regenerate themselves using

the correct compiler source code as input, demonstrating that they could pass the compiler

107

bootstrap test and the self-regeneration test. However, when given a special “login” program, the

compiler executables would produce different answers. Thus, these programs really do

demonstrate the attack.

The DDC technique was then applied. First, it was applied to the correct source code, using the

underlying Common Lisp implementation (clisp) as the trusted compiler cT. The stage 2 output

was then compared to the correct compiler executable, and was shown to be equal. The stage 2

output was then compared to the incorrect compiler executable, and was shown to be not equal.

A unified diff was then applied to the stage 2 and incorrect compiler executable; this showed the

“unexpected” differences, and immediately revealed that the difference had something to do with

the login program. This difference is an immediate tip-off that there is something malicious

happening; no compiler should be specifically looking for the login program, and then acting

differently! An examination of the difference quickly revealed that it was comparing the input to

a login program’s pattern, and then inserting special code in this special case.

DDC detected the difference because proof #2 assumption definition_cA (see section 5.7.12) was

not true in this case. That is, compiler-under-test cA had not been generated by the putative

process from the “correct” source code, but instead was created by compiling the “incorrect”

source code.

Appendix A includes more detail, including the actual “diff” between the executable produced by

DDC with the executable of the incorrect compiler.

108

7.3 GCC

To conclusively demonstrate that DDC can be scaled up to apply to “industrial-scale” compilers

widely used in commercial applications, the DDC process was successfully applied to the GNU

Compiler Collection (GCC), specifically the C compiler of GCC.

In 1983, Richard Stallman began searching for a compiler that would help meet his goal to create

an entire operating system that could be viewed, modified, and redistributed (without limitations

like royalties). He did not find an existing compiler that met his licensing, functionality, and

performance requirements, so he began writing a C compiler from scratch, which became the

basis of GCC. Today, GCC is a GNU Project directed by the Free Software Foundation (FSF). It

is licensed under the GNU General Public License (GPL).

GCC is widely used, though specific statistics are difficult to find. “GCC’s user base is large and

varied... no direct estimate of the total number of GCC users is possible... [but] GCC is the

standard compiler shipped in every major and most minor Linux distributions [and is] the

compiler of choice for the various [Berkeley Software Distribution (BSD)-derived] operating

systems... The academic computing community represents another large part of GCC’s user

base... GCC is also widely used by nonacademic customers of hardware and operating system

vendors... [considering] the broad range of hardware to which GCC has been ported, it becomes

quite clear that GCC’s user base is composed of the broadest imaginable range of computer

users.” [vonHagen2006]

7.3.1 Setup for GCC

DDC can be used to regenerate an existing compiler executable, given enough information on

how it was compiled and the other assumptions already discussed. However, after many fruitless

109

attempts to do this with Fedora Core, it was found that the Fedora project (and probably many

other distributions) does not record all the information necessary to easily recreate the exact same

compiler executable from scratch. In some cases there were dependencies on software that was

not shipped with the distribution. This may seem surprising, but in practice this information has

not been needed; many organizations record these files for later use instead of regenerating

them.17

So for purposes of the experiment, a new GCC executable was created specifically to demonstrate

DDC, using the publicly-available GCC source code. The executable was created using the GCC

executable that comes with Fedora (which was a different version than the source code being

compiled) as the “grandparent” compiler. To simplify the test, the compiler was self-regenerated,

that is, sP=sA. The resulting compiler executable, after two compilation stages, was then

considered to be the compiler-under-test cA. Then, the DDC process was used (with a different

trusted compiler) to determine if it would produce the same result as the compiler-under-test.

This way, all necessary information for the experiment would be available.

The GCC suite includes a large number of different compilers for different languages.

Attempting to cover all of these languages was not necessary for purposes of this dissertation.

Thus, work focused on the C compiler. Future work could add support for other languages using

the approach described here.

The GCC suite depends on a great deal of external software. This includes a linker (typically

named “ld”), assembler (typically named “as”), archiver (“ar”), symbol table constructor

(“ranlib”), and standard C library, as well as an operating system (especially a kernel) to run on.

17 My thanks to Aaron Hatcher, who attempted to apply DDC to various versions of GCC included in
Fedora Core, and to Jakub Jelinek of Red Hat, who tried to provide Aaron with the necessary information
to regenerate the executables after-the-fact. Aaron’s efforts were unsuccessful at the time, but they
provided insight that later led to the successful application by Wheeler that is described here.

110

In particular, the C compiler cc1 generates assembly code, which is then assembled. For

purposes of this experiment, all of these external programs were considered to be external to the

compiler. These additional programs could have been covered by DDC by considering them as

part of the compiler, however, doing so would have made this first experiment even more

difficult, and would not have shown anything substantial. These other programs are not trivial,

but the main C compiler is key; once we can show that DDC can handle the “real” C compiler,

expanding the scope of DDC to cover these other programs (if desired) is merely a matter of

additional effort.

To demonstrate DDC, a second trusted compiler was needed, one that was able to correctly

process the large and complex GCC source code. After examining several compilers, the Intel

C++ Compiler (icc) was chosen. In spite of its name, icc also includes a C compiler. Initial tests

suggested that icc was a relatively reliable compiler, and icc supports many GCC extensions and

implementation-defined behavior with the same semantics, making it more likely to successfully

compile GCC. The latest version of icc available at the time, version 11.0, was used.

Is icc sufficiently trustworthy to be used as a trusted compiler? There are at least two factors

suggest that it is, because they decrease the risk that icc includes triggers and payloads that would

subvert GCC and match any subversion already present in the GCC executable. First, GCC is

released under the GPL, while icc is a proprietary product not released under the GPL. If icc’s

source code included a significant amount of source code from GCC, this would be a significant

copyright infringement case, and it is unlikely that Intel corporation would risk releasing a

program in such an illegal way. Thus, an attacker would need to write significantly different

code to embed in each program. Second, icc is produced by a completely separate organization

(Intel) than GCC executables; thus, subverting both executables would require that the attacker

111

subvert executables in two completely different organizations’ processes. Thankfully, for the

purpose of this experiment, it does not matter if icc is sufficiently trustworthy or not. The

primary reason to apply DDC to GCC is to show that DDC can “scale up” to large compilers like

GCC. From this vantage point, what matters is if DDC works with GCC, not whether or not icc

is actually trusted.

There are many different versions of GCC available, and for purposes of the experiment, any

version of GCC would do as the compiler-under-test. However, it must be possible for the trusted

compiler to compile the source code of the parent (in this case, it is the same as the compiler-

under-test). The parent must also be able to compile the compiler-under-test (in this case, the

compiler-under-test must be able to recompile itself). The newer GCC versions 3.4.4, 4.0.4, and

4.1.2 could not be easily recompiled by icc (giving error messages instead), so they were not used

for this experiment. Should DDC become a common process, compiler developers should test

their compilers to ensure that they are easily compiled by other compilers. Remarkably, the

source code for GCC version 3.1.1 could not be compiled by the GCC version installed in Fedora

(version 4.3). For purposes of this experiment, GCC version 3.0.4 was selected to be the source

code for the compiler-under-test, since it met these requirements.

All compilations were performed on a personal computer running the Fedora 9 Linux distribution

in 32-bit mode on an x86 system. Compiler caches were completely disabled at all times (by

removing the package ccache), to ensure that all recompilations were actually performed. The

“kernel-headers” package was also installed, since it defined key constants necessary for

recompilation of GCC.

112

When recompiling the GCC compiler, a number of options are available, which unless required

were left to their defaults. For example, the “prefix” value, which identifies the prefix of its

pathname when installed, was left as its default value “/usr/local”. All compilations were

performed as a normal user, and not as root.

As with tcc, the recompilation of gcc had many sub-steps. In particular, certain run-time libraries

were compiled first, before the compilation of the “main” compiler itself, just as with tcc.

7.3.2 Challenges

7.3.2.1 Master result directory

One piece of critical information that had to be recorded is the full pathname of the “master

result” directory that contains the source code and object directories. This value is passed to the

build process through the DEST environment variable, and this value embedded in the final

executable. In the experiment this value was “/home/dwheeler/thesis/work”, but this specific

113

Figure 6: DDC applied to GCC

1sA=sP:
GCC
3.0.4

2

stage1

cT (trusted compiler):
icc 11.0

DDC Process Claimed Origin/Regeneration

o1

cA

cGP (grandparent):
GCC of Fedora 9

stage2

o2

cP

sA=sP:
GCC
3.0.4

value is unimportant; the key is making certain that DDC uses the same value as was used when

creating the compiler-under-test.

From a formal proof perspective, the contents of the DEST environment variable may be

considered part of the source code sP and sA. If the value used during DDC is different than the

value used to create the original parent and compiler-under-test, we would be compiling different

source code, violating assumptions definition_stage1 and/or definition_stage2 when compiling sP

or sA respectively (see section 5.7.1). Thus, the results of proof #2 can only apply to GCC if the

DEST value when performing DDC is the same as was used to create the original compiler-

under-test. This demonstrates that successfully applying DDC may require extremely detailed

information about the compilation of the compiler-under-test. It might be better if the compiler

did not embed such information in its executable, to reduce the amount of data that must be

duplicated (see appendix D for guidelines for compiler suppliers).

7.3.2.2 Obsolete format for tail

The build process for the chosen version of GCC (3.0.4), as part of its “make compare” step, uses

an obsolete format for the “tail” command. For example, it uses “tail +16c” to skip the first 16

characters. This format is no longer accepted by default by modern GNU implementations of

“tail”, which interpret “tail +16c” as an attempt to read from a file named “+16c”. This was

resolved by setting the environment variable “_POSIX2_VERSION” to “199209” before the

build is performed; GNU tail will notice that this environment variable is set and use the older

(GCC-expected) semantics.

114

When the environment variable _POSIX2_VERSION is not set, assumption cT_compiles_sP (see

section 5.7.2) is untrue, so the results of proof #2 would not apply. In short, the trusted compiler

must be configured so that it can compile source sP.

7.3.2.3 Libiberty library

Unfortunately, the DDC process did not produce an executable equal to the compiler-under-test at

first, even after adjusting for the master result directory and the obsolete tail format. This meant

that one of the assumptions of proof #2 was still not true. Determining why this was so (by

tracking this backward through the executables and object code in a large compiler to determine

the cause) was extremely time-consuming, due in part to the large size of GCC, and produced a

very unexpected result. It turned out that GCC 3.0.4 did not fully rebuild itself when later build

stages were requested, even though the GCC recompilation documents stated that they did, due to

the way the GCC build process handles its “libiberty” run-time library routines.

The GCC compiler documentation explains that its normal full build process, called a

“bootstrap”, can be broken into “stages”. The command “make bootstrap” is supposed to build

GCC three times—once with the native compiler, once with the native-built compiler it just built,

and once with the compiler it built the second time. Each step of this process is called a “stage”

[GNU2002, section 14]. The last two stages should produce the same results; “make compare”

checks if this is true (this is a “compiler bootstrap” test). This recompilation process includes

recompilation of the “libiberty” library, a collection of lower-level subroutines used by various

GNU programs.

Unfortunately, actual GCC build behavior does not match the GCC documentation for “make

bootstrap”. The stage1 compiler was not used to recompile the internal libiberty library when

115

creating stage2; instead, the results of stage1 were directly copied into stage2. This appears to be

a side-effect of how the makefiles were written; when stage2 was performed, the make program

determined that the libiberty object file was dated after the source, and skipped rebuilding it.

Because of this, the resulting executable was actually a hodgepodge that combined the results of

two different compilers into a single executable. After a long effort to track down this problem, it

was noted that there was a hint about this defect in the GCC documentation, though its

significance was not obvious at the time: “Libiberty [is only] built twice... fixing this, so that

libiberty is built three times, has long been on the to-do list.” [GNU2002, section 14]

From the formal model’s perspective, this meant that assumption definition_stage2 was not true

(see section 5.7.1). Since this assumption was not true, the results of proof #2 do not apply.

It would be possible, though nontrivial, to directly apply DDC to this circumstance. In this case,

we have a “parent” compiler that is different than the compiler-under-test, so we would require

the source code for both the compiler-under-test and the parent compiler. But this would be a

complex approach, far more complex than necessary for use as a real-world demonstration, and it

was clear from the documentation that the intent of the compiler authors was to completely

regenerate the compiler in stage2.

Instead, the GCC makefile was modified to permit finer control over the building process. Then

the process to rebuild the compiler (for both the compiler-under-test and DDC) was modified so it

correctly recompiled the entire compiler in stage 2, by doing:

• “make all-bootstrap”, which used the “initial” compiler to compile libraries (such as

libiberty) and necessary bootstrap tools to prepare for stage1. The “initial” compiler for

the “compiler-under-test” was a different version of GCC. The initial compiler for DDC

was, instead, icc.

116

• “make stage1_build” to build the first stage GCC.

• A forced rebuild of libiberty, using the new stage1 compiler.

• “make stage2_build” to produce the final stage2 GCC.

• Although not strictly necessary, a “make stage3_build” followed by “make compare” was

also done to detect certain kinds of recompilation errors. (This is a “compiler bootstrap”

test.)

7.3.3 GCC Results

Once the corrected GCC build process was used for the compiler-under-test and the DDC

process, DDC produced bit-for-bit identical results with the compiler-under-test, as expected.

The resulting GCC compiler is actually a set of files, instead of a single file. Appendix B

presents the detailed results.

117

8 Practical challenges

There are many practical challenges to implementing DDC. This chapter discusses some of these

challenges and how to overcome them. Some of this information was discovered or extended

through the process of implementing the demonstrations.

8.1 Limitations

All techniques have limitations. DDC only shows that a particular executable corresponds to a

particular source code, resulting in these key limitations of DDC:

• There may be other executables that contain Trojan horse(s) and yet claim to correspond

to a given source. This can be resolved by using cryptographic hashes of the executable

and the source code, and including their hashes when reporting that DDC succeeds.

• The source code may have malicious code (such as Trojan horses) and/or errors, in which

case the executable file will too. However, if the source and executable correspond, the

source code can be analyzed in the usual ways to find such problems. Thus, DDC does

not eliminate the need for review; instead, it allows review processes to concentrate on

the source code, knowing that if certain other assumptions hold, DDC will prove that the

executable will correspond to the source code. In short, DDC can show that there is

“nothing hidden”, enabling review of source code instead of executable code.

• When the DDC result is not equal to the original compiler-under-test, at least one of the

assumptions of proof #2 has been violated, but it may not be apparent which

118

assumption(s) have been violated. Determining the cause may require examining

differences of executables and/or the compilation process, which for large compilers can

be difficult and time-consuming. If a compiler executable does not correspond with its

source code, it is corrupted. This corruption need not be malicious, though as shown in

appendix A, it is sometimes possible to examine the differences and determine that the

corruption is malicious. One potential cause for the inequality is non-determinism, which

will be discussed next.

8.2 Non-determinism

Uncontrolled non-determinism may cause a compiler to generate different results at different

times for the same source input. Even uninitialized values can cause this non-determinism, as

was the case for tcc (see section 7.1.4). It may be easiest to modify the compiler to be

deterministic (e.g., add an option to set a random number seed and initialize formerly

uninitialized data).

Differences that do not affect the outcome do not affect DDC. For example, heap memory

allocations during compilation often allocate different memory addresses between executions, but

this is only a problem if the compiler output changes depending on the specific values of the

addresses. Roskind reports that variance in heap address locations affected the output of at least

some versions of the Javasoft javac compiler. He also stated that he believed that this was a bug,

noting that this behavior made port validation extremely difficult [Roskind 1988]. Many

compiler authors avoid making compilers non-deterministic because non-determinism makes

testing difficult.

119

8.3 Difficulty in finding alternative compilers

DDC requires a trusted compiler. Unfortunately, there may not be other compilers for the general

language used to write sA or sP. Even if there are other compilers for the general language, sA or sP

may use non-portable extensions.

Thankfully, there are many possible solutions if sA or sP cannot be compiled by existing

compilers. The DDC technique only requires that a second compiler with the necessary

properties be created. An existing compiler could be modified (e.g., to add extensions) so it can

perform the necessary compilation. Another alternative is to create a trusted preprocessing step,

possibly done by hand; in this case cT would be defined as being the preprocessing step plus the

existing compiler. It is also possible to write a new trusted compiler from scratch.

In general, performance of the trusted compiler is irrelevant, and the trusted compiler only needs

to be able to compile one program (so it need not implement many complex functions). In

addition, there are good reasons to have a second compiler that have nothing to do with DDC

(e.g., having an alternative to switch to if the primary compiler has fundamental problems). Thus,

this need for a trusted compiler does not create a fundamental limitation to the application of

DDC. Indeed, compiler developers may choose to limit the code constructs used in a compiler

(e.g., to a well-standardized and easily-implemented subset), specifically to ease the application

of DDC.

It may be possible to use an older version of cA as cT, but as noted in section 6.2, that is far less

diverse so the results are far less convincing. Doing so also risks “pop-up” attacks, described

next.

120

8.4 Countering “pop-up” attacks

A “pop-up” attack, as defined in this dissertation, is where an attacker includes a self-perpetuating

attack in only some versions of the source code (where the attack “pops up”), and not in others.

The attacker may choose to do this if, for example, the attacker believes that defenders only

examine the source code of some versions and not others.

Imagine that some trusted compiler cT is used to determine that an old version of compiler cA—

call it cA1—corresponds to its source sA1. Now imagine that an attacker cannot modify

executables directly (e.g., because they are regenerated in a separate controlled process), but that

the attacker can modify the source code of the compiler (e.g., by breaking into its repository).

The attacker could sneak malevolent self-perpetuating code into sA2 (which is used to generate

cA2), and then remove that malevolent code from sA3. If cA2 is used to generate cA3, then cA3 may

be maliciously corrupted, even though sA3 does not contain malevolent code and cA1 corresponded

to sA1. Examination of every change in the source code at each stage can prevent this, but this

must be thorough; examining only the source’s beginning and end-state will miss the attack.

The safest way to counter “pop-up” attacks is to re-run DDC on every executable release before

the executable is used as a compiler, using a trusted compiler cT. If that is impractical, at least use

DDC periodically and unpredictably to reduce the attack window and increase the attacker’s risk

of discovery.

8.5 Multiple sub-components

Compilers may have multiple sub-components (such as a preprocessor, a front end, a back end, a

peephole optimizer, a linker, a loader, and one or more run-time libraries). All of these sub-

components could be in different files and be generated by separate recompilation steps. If these

121

recompilations can be done in any order, and there is no interaction between them, we can simply

perform each step, in any order. But if compiling a sub-component depends on the result of

recompiling another sub-component (e.g., because it's a run-time library that will be embedded in

the resulting executable), then these dependencies must be honored, just as when recompiling the

compiler for any other reason. In general, if the sequence steps matters during compilation of sP

or sA, then applying DDC must take sequencing into account (the safest approach is to use the

same sequence as was used to create the original cP and cA).

Compiler cT may have multiple components, but since its recompilation is out-of-scope of DDC,

this is irrelevant. All that is necessary is that cT have the required properties (as a suite) for DDC.

8.6 Timestamps and inexact comparison

One potential challenge is that, in some cases, the compiler-under-test and the DDC result will

not normally be equal (when DDC is applied and “equality” is defined in the obvious ways). For

example, some compilers generate formats (such as the archive “.a” format) that embed

timestamps; when compilers are re-run, they would normally produce obtain different time

values, and thus will generate different results. Typically the problem is that the parent compiler

is not deterministic (see section 5.7.8).

The timestamps of executable files are normally not a problem if the executable is represented as

a set of files, each of which has a timestamp (e.g., a “modification time”) as part of the file

metadata maintained by an operating system. A timestamp cannot normally change execution in

such cases, as execution does not usually begin by executing a timestamp; instead, execution

begins by loading and executing the contents of a file. From there on, since file contents of cA

and stage2 are the same, the execution of cA and stage2 must be identical as long as they only

122

consider their contents and do not retrieve metadata about themselves (such as timestamps). If

timestamp information is retrieved and acted upon by the compiler-under-test, at least the first

occurrence of this must be included in cA. Since the file contents of cA and stage2 are identical,

then this first occurrence must be in the file contents of stage2. Thus, at least this first occurrence

must be in the source code processed by DDC. This means that we only need to review the

source code as used in DDC and consider operations that can retrieve timestamp information,

which are typically separate operations, to detect if subversion via timestamps might occur.

Unfortunately, this argument does not help if timestamps are embedded in the files themselves, as

many operations are based on file contents. Are there other solutions?

In some cases, the simplest solution is to simply use executable formats that do not embed

timestamps in the first place. For example, for tcc, the ELF “.o” format (which does not embed

timestamps) was used instead of directly comparing files in the “.a” format (see section 7.1.2).

Once this comparison is done, trusted tools can be used to transform formats that can be directly

compared (like “.o”) into formats that have embedded timestamps (like “.a”). Where possible,

this will tend to be the easiest approach.

If formats with embedded timestamps must be used, in some cases it is possible to rig the original

compilation of cA and/or the DDC process so that the compilation processes would receive equal

timestamp results. This approach attempts to make the compilation process deterministic.

Finally, in certain cases, “equality” may need to redefined, essentially allowing inexact equality.

Comparisons need not require an identical result as long as it can be shown that the differences do

not cause a change in behavior. This might occur if, for example, outputs included embedded

compilation timestamps. Showing that differences in results do not cause differences in the

functionality, in the presence of an adversary, is possible but can be extremely difficult. An

123

alternative is to first work to make the results identical, and then show that the steps leading from

that trusted point do not introduce an attack.

8.7 Interpreters and recompilation dependency loops

In some cases, what is executed bears a more complicated relationship to source code than has

been shown so far, but the trusting trust attack can still be countered using DDC.

It does not matter if the executable is a sequence of native machine code instructions or

something else (such as an “object file”, “byte code”, or non-native instructions). All that is

required is that there be some environment that can execute the instructions. If there is a concern

that some parts of the environment may be corrupted, consider those parts as part of the compiler

(this requires their source code) and apply DDC.

Many language implementations do not generate a separate executable that is run later. They may

read and immediately execute source code (call it sE) a line at a time, or they may compile source

code sE to an executable (often a specialized byte code) each time the source code is run and not

save the executable for later use. In these cases, the trusting trust attack does not directly apply to

sE, since there is no separate executable in which malicious code can be hidden. However, these

implementations tend to be compiled executables (for speed); any language implementations that

are compiled are vulnerable to the trusting trust attack, and DDC still applies to them.

As noted in section 4.5, DDC can be applied to compilers that recompile themselves (as a special

case). When compilers do not recompile themselves, DDC can be repeatedly applied to each

ancestor compiler, from oldest to newest, to demonstrate that each of the ancestor compilers are

not corrupt. If there is a loop of compilers (e.g., compiler cA is used to generate compiler cB, and

124

cB is used to generate the next version of compiler cA), DDC can still be used; arbitrarily choose a

compiler to check, and “break the loop” using an alternative trusted compiler.

8.8 Untrusted environments and broadening DDC application

The environment of cA may be untrusted. As noted earlier, an attacker could place the trigger

mechanism in the compiler’s supporting infrastructure such as the operating system kernel,

libraries, or privileged programs. Triggers would be especially easy to place in assemblers,

linkers, and loaders. But even unprivileged programs might be enough to subvert compilations;

an attacker could create a program that exploited unknown kernel vulnerabilities.

The DDC technique can be used to cover these cases as well. Simply redefine the “compiler” cA

to include the set of all components to be checked, and not just the traditional interpretation of the

term “compiler”. This could even include the set of all software that runs on that machine,

including all software run at boot time. The source code for all this software to be checked would

still be termed sA, but sA would now be much larger. Consider obtaining cA and sA from some

read-only medium (e.g., CD-ROM or inactive hard drive); do not trust this redefined untrusted cA

to produce itself (e.g., by copying cA’s files using cA)! Then, use DDC on a different trusted

environment to check cA. Depending on the scope of this new cA and sA, this might regenerate the

boot software, operating system, various application programs, and so on. If DDC can regenerate

the original cA, then the entire set of components included in cA are represented by the entire set of

source code in sA. There is still a risk that cA includes malicious code, since DDC only shows that

cA corresponds to sA, but this can be countered by reviewing sA. If cA or its environment might

have code that shrouds sA (so that the sA viewed is not the actual sA), always use a separate trusted

system to view or print sA when reviewing sA.

125

An alternative approach to countering potentially-malicious environments is to maximize the

amount of software that is used in source code form, without storing an executable. This is

already done with many “scripting” languages (such as typical implementations of Python and

PHP). It can, however, also be done with languages that are typically compiled. The original

developer of tcc demonstrated that the tcc C compiler could be booted with a relatively small

infrastructure; the compiler could then recompile the operating system (including the Linux

kernel) at boot time and then run the results. DDC could still be used to examine whatever is

stored as an executable for the underlying environment (e.g., the scripting language

implementation or boot-time compiler).

A resourceful attacker might attack the system performing DDC (e.g., over a network) to subvert

its results. If this is a concern, DDC should be done on isolated system(s). Ideally, the systems

used to implement DDC should be rebuilt from trustworthy media, not connected to external

networks at all, and not run any programs other than those necessary for DDC.

8.9 Trusted build agents

Few will want to perform DDC themselves. Organization(s) trusted by many others (such as

government agencies or trusted organizations sponsored by them) could perform DDC on a

variety of important compiler executables, as they are released, and report the cryptographic hash

values of the executables and their corresponding source code. The source code would not need

to be released to the world, so this technique even could be applied to proprietary software

(though without the source code, the information that they correspond is much less useful). This

would allow others to quickly check if the executables they received were, in fact, what their

software developers intended to send. If someone did not trust those organizations, they could

ask for another organization they did trust to do this, or do it themselves if they can get the source

126

code. Organizations that do checks like this have been termed “trusted build agents.”

[Mohring2004]

8.10 Application problems with current distributions

There are a number of “distributions” that combine open source software from a large variety of

different origins, integrate them, and distribute the suite to end users. In theory, these should be

easy to test using DDC. Efforts to recreate the GCC compiler distributed with Fedora, even with

help from Red Hat, showed that this is not always easy.

Accurately re-creating a distribution’s executable files requires extremely detailed information

about how the compiler was generated, but distributors do not always record this information.

Some of this detailed information can be obtained by attempting to apply DDC and examining the

differences, e.g., compiling GCC with a different pathname for intermediate results, and

comparing the results, will quickly reveal the original pathname. However, in some cases, the

difference can be detected by DDC, but the cause of the difference may not be obvious.

In some cases, obtaining the correct parent sP can be difficult. Distributions typically release their

software as a large set of interrelated “packages”, and most distributions distribute pre-compiled

executables of their packages. During development of a new distribution version, the compiler,

libraries, and applications are all updated, sometimes multiple times. Once an executable

(compiler or not) is created, it is frozen and tested. There is a strong incentive to not recompile

the entire operating system when a compiler is revised, for if a problem occurs afterwards, it can

be difficult to determine where the problem is. In contrast, if packages are recompiled and tested

one at a time, then problems can be immediately pinpointed. As a result, the practice of

incrementally testing and releasing executable files can lead to different packages being compiled

127

by many different versions of a compiler within the same distribution. If the compiler is modified

several times during the distribution’s release process, some packages may be compiled with a

version of the compiler that is neither the previous released version nor the final released version

version—but is an intermediate instead. What is more, compiler executables may incorporate

material from other packages, which were themselves compiled with different versions of the

compiler.

Distributions could easily make minor modifications to their processes to make DDC easier to

apply. Recording the information necessary to accurately reproduce an executable is one

approach. Another approach is to freeze the compiler at an earlier stage, and recompile

everything so the executables are compiled using a single known version of the compiler. Now

that DDC has been demonstrated by this dissertation, compiler suppliers have a stronger rationale

for recording the information necessary to recreate executables.

There are other issues with current Linux distributions that can be easily worked around for DDC,

but can cause trouble for the unwary:

• Many Linux distributions use “prelink”, which modifies the files of executable

commands and libraries of a running system to speed their later invocation. This is not a

problem as long as the files are captured and compared using DDC before they are

changed by prelink.

• Many Linux distributions use “ccache”, a system that caches compilation results and

quickly replies with previous results if the inputs and compiler are “the same”. If the

caching system incorrectly determines that the compiler being invoked is “the same”, but

is in fact different, then the wrong results will be used. This would invalidate the results

128

if this mistake occurred during DDC. This risk is easily eliminated by disabling such

caches when performing DDC.

8.11 Finding errors and maliciously misleading code

DDC simply shows that source code corresponds to executable code (given some assumptions).

Knowing that source code corresponds with an executable is valuable, since software developers

are far more likely to review source code than an executable. At the very least, developers must

review some source code when they are preparing to change it.

This does not make source code analysis trivial; it may be difficult to find intentional

vulnerabilities in large and complex software. But it does tend to make it easier to find

intentional vulnerabilities. In particular, errors can be detected and resolved by traditional means

as discussed in section 2.4.

But is it enough to ensure that the source code and executable correspond? An attacker who can

modify compiler source code could insert maliciously misleading code, that is, code that is

designed to appear to be correct but actually does something malicious instead. The

Obfuscated V contest [Horn2004], the Underhanded C contest [Binghamton2005], and the Linux

kernel attack (discussed in section 2.6) all show that it is possible to write maliciously misleading

code. Williams also discusses methods for hiding code sot that it does not appear to be malicious

[Williams2009].

The good news is that these public examples also suggest that simple measures can counter many

of them. Some examples use misleading formatting (e.g., text that looks like a comment but is

not, or text that is highly indented so some text editors will not show it); these can be countered

by using a “pretty printer” to reformat source code before review. Some examples exploit buffer

129

overflows; these can be countered by using languages or tools that prevent buffer overflows.

Some examples use widely-known “common mistakes” for the given programming language

(e.g., mistaking “=” for “==” in C); these can be countered by training human reviewers and

using tools to highlight or forbid “confusing” constructs. In the longer run, languages could be

designed or modified to make hiding more difficult and/or make common mistakes less likely.

For example, Java was specifically designed to make certain common errors in C impossible or

less likely. In any case, implementing the “trusting trust” attack requires some subtle

programming; the probability of its happening “by accident” is vanishingly small, and this makes

it more difficult to hide as a simple error such as invoking the wrong operator. Tools could be

developed to search for maliciously misleading code, yet not released (as source code, executable,

or a service) to the public. Such unreleased tools could make it difficult for attackers to be

confident that their attacks will go undetected.

8.12 Hardware

DDC can be extended to hardware, including computer hardware, to counter the risk that

hardware tools are intentionally subverted to produce later subverted hardware in a self-

perpetuating manner.

However, a few observations must be made. First, what some people call “hardware” is actually

software. For example, all CPU microcode and a computer’s basic input/output system (BIOS)

originates as software. Since they are software, they can be handled the same way as any other

software, including using DDC as described in the rest of this dissertation.

130

Second, DDC is not necessary to counter direct subversion of hardware components, or to

counter subversion of hardware by software in a way that does not self-perpetuate:

• If the threat is that a human will insert malicious logic into a human-readable hardware

design, then one countermeasure is to review the designs, making sure that what is used

in later steps is what was reviewed.

• If the threat is that a tool’s output may be subverted after it has left the tool, then if the

tool can be made to be deterministic, one countermeasure is to rerun that tool and

comparing the new results with the previous results to reveal any differences. In multi-

step processes, rerun each step in sequence and determine if there is a difference. In

addition, consider comparing the actual results with the expected results18. Performing

such comparisons of hardware may require an “equality” operator; as discussed below,

determining if hardware is equal can be more difficult than for software.

• If the threat is that a software executable may insert malicious logic when it processes a

hardware design, one countermeasure is to review the software tool’s source code. If the

program’s executable may have been corrupted, but the source code is correct and the

generation process for the executable is trusted, simply recompile the tool with the same

circumstances as when it was last compiled and see if the resulting executable is

identical.

There is another threat, however, that is rarely discussed: What if hardware has been subverted so

that it intentionally subverts the hardware implementation process of other (later) hardware, in a

self-perpetuating way? At this time, such indirect attacks seem far less likely:

18In practice, unexpected differences between the “actual” and “expected” hardware results may be
frequent, due to issues such as incomplete information and errors, but such differences could be malicious.

131

• Undetected hardware subversion of another hardware component’s development process

is harder to do than for software. For software this kind of subversion tends to be easier

to do because the attacking software is typically at a similar level of abstraction. In

contrast, hardware tools used to implement other hardware are often at a much lower

level of abstraction, making it more difficult to create useful automated triggers and

payloads in hardware tools that have a high probability of being useful in attacking the

hardware design or implementation process, while having a low probability of being

detected.

It is particularly challenging to create hardware tools that intentionally and undetectably

subvert only certain hardware made with them if the tool lacks a computer. It is possible

to create hardware tools that subvert only certain products made with them and not

others, e.g., to insert lower-quality or subtly damaged tools so that the tools will work

fine in many cases yet subtly fail when making the hardware to be subverted. However,

this is similar to ordinary quality control problems, and might be detected by robust

quality control and testing processes (though there is no guaranee of this). In addition,

there are usually grave limits on the kinds of triggers and payloads that can be used

without using a computer. In some cases an attacker could add a computer where one is

not necessary or expected.

• There is often little need to implement such a complicated attack on hardware. There are

many other difficult-to-counter attacks at the hardware level which are much easier to

perform.

Still, if undetected subversion of hardware by other hardware is considered a threat, then DDC

can be used to help counter it, as long as the prerequisites of DDC are met.

132

Countering this attack may be especially relevant for 3-D printers that can reproduce many of

their own parts. An example of such a 3-D printer is the Replicating Rapid-prototyper (RepRap),

a machine that can “print” many hardware items including many of the parts required to build a

copy of the RepRap [Gaudin2008]. The primary goal of the RepRap project, according to its

project website, is to “create and to give away a makes-useful-stuff machine that, among other

things, allows its owner [to] cheaply and easily… make another such machine for someone else”

[RepRap2009].

Many hardware components do not present much of an opportunity for creating self-perpetuating

undetectable subversion (the trusting trust attack). Large physical components that cannot be

programmed can often be examined directly, and often do not involve the separation of “source”

and “executable” that permit the hidden attacks countered by DDC.

Unfortunately, an integrated circuit (IC), whether it is part of a 3-D printer or not, does present

such a possibility. ICs are typically very complex, difficult to analyze after-the-fact, and humans

often do design and implement them using abstractions instead of directly examining the result.

Thus, ICs are especially easy to use for hardware implementations of the trusting trust attack.

In theory, DDC can be applied to ICs to detect a hardware-based trusting trust attack. However,

note that there are some important challenges when applying DDC to ICs:

• Trusted compiler. For DDC to work with hardware there must be a separate trusted

compiler. Depending on what is being tested, it may be possible to implement this using

a combination of hardware compiler, simulated (resulting) chip, and a chip simulator.

133

• Equality operator. For DDC to work on hardware, it needs an “equality” operator. An

equality operator may be particularly challenging to implement for complex ICs, but may

be possible to gather enough information to determine if an IC was “equal to” another IC

(real or virtual) with an acceptable level of probability. Tools such as a scanning electron

microscope, scanning transmission electron microscope (STEM), focused ion beam,

and/or a tool that performed optical phase array shifting might be able to gather enough

information to justify a claim of equality, especially when used with varying angles

and/or positions. These might be more successful if there were supplemented with other

test techniques, such as techniques that check electrical connectivity in a variety of

locations or techniques that performed parity checks of stored data. It might be possible

to use superposition to detect different phase changes through diffraction, but this may be

too sensitive a test, yielding many false difference reports. Indeed, real ICs typically

have small defects of various kinds, so any equality operator on ICs risks producing false

reports that ICs are different even when they are, in practice, the same.

• Legal challenges for information access. DDC requires detailed information, and for ICs

the necessary information is often difficult to obtain legally. In particular, DDC requires

that the correct hardware results be known, so that it can be compared to the real

hardware. This need for detailed information is less challenging for software; software

developers would often find it unacceptable if they couldn’t see the bytes that their

compilers produced. In contrast, in IC development large amounts of IC data (including

the actual layout of the ICs) is often kept proprietary from even the chip designers. ICs

may be routinely modified in their many manufacturing steps in ways not disclosed to the

chip designers. For example, many IC designers use libraries written using Verilog or

Very High Speed Integrated Circuits (VHSIC) hardware description language (VHDL),

134

but the designs of these libraries (as shown by their design tools) may not be what are

normally used on ICs produced with those libraries (in such cases the “real” library may

be considered proprietary by the library creator). Many ICs are built out of intellectual

property (IP) cores from various organizations worldwide, and designers may be

forbidden (by contract) to see detailed information about the implementation of certain IP

cores. In addition, because of quantum mechanical effects, at smaller scales there are

corrections that some companies will do to IC layouts or wiring that designers are

forbidden (by contract) to see. Many chip designers are unaware that what is actually on

the ICs they designed may be intentionally different from what they designed; this lack of

knowledge may be exacerbated because many IC designers are not near the foundries

(and thus have fewer opportunities to discover these differences). Should the use of DDC

become important for ICs, such detailed information would need to be made available to

someone who could perform DDC.

Finally, it is important to note that any application of DDC to hardware will only apply to that

specific hardware component. Thus, if IC #1 passes a DDC test, this does not mean that IC #2

will pass it, even if both ICs were created at the same time. This is true for software as well, but

it is much easier to determine if two executables are identical.

Nevertheless, it appears that DDC could be applied to hardware, given the caveats and limitations

listed above.

8.13 Complex libraries and frameworks

Modern programming languages typically include large programming libraries and frameworks.

Reviewing all of this source code, if it were required, can be very difficult. What is worse, if the

135

entirety of these large libraries and frameworks must be implemented by a trusted compiler, there

may be few or no alternative compilers that can be used as a trusted compiler.

Thankfully, this does not render DDC useless. The trusted compiler only needs to implement the

functionality necessary to compiler the parent compiler; it does not need to implement all of the

features of the parent nor the compiler-under-test. In practice, compilers typically do not need

most of the functions of the libraries and frameworks they support. In addition, compiler writers

may decide to limit the functionality required to compile the compiler (e.g., so that the compiler

is easier to port to a new platform or so that there are more trusted compilers that can be used for

DDC).

8.14 How can an attacker counter DDC?

An important practical challenge for a defender is to ensure that an attacker cannot counter DDC

as a technique for detecting the trusting trust attack. To analyze this challenge, consider DDC

from the point-of-view of an attacker who intends to perform a trusting trust attack and avoid

detection via DDC. (This viewpoint will also address what happens when a trusted compiler is

subverted.)

Fundamentally, an attacker must make at least one of the DDC assumptions false to prevent

detection by DDC. As an extreme example, imagine that the attacker has direct control over the

DDC process. In this case, the attacker could falsify the assumption that stage2 is generated by

the DDC compilation process, by allowing the DDC process to complete, and then replacing the

generated stage2 with the compiler-under-test. This is an extreme example, however; if the

execution of the DDC process is protected (so that the attacker cannot directly control it), an

attacker will have difficulty falsifying many of of the DDC assumptions.

136

One possibility would be to embed a subversion in the environment so that the compiler-under-

test that is extracted and compared is not the program that is actually run. This would falsify the

assumption that the executable being tested is the one that is actually used. An environment can

perform this slight-of-hand by storing the “real” compiler executable (e.g., in the filesystem)

where it will be run, but providing a different “clean” executable when it is extracted for read-

only use. This slight-of-hand can be countered by shutting down the potentially-subverted

environment and extracting the executable directly from storage. Alternatively, an environment

can store the “clean” executable in the filesystem, yet switch or modify the executable that is

actually run. One way to counter this latter attack is to expand the definition of “compiler” to

include more of the environment, as described in section 8.8. This requires more source code, but

would reduce the number of components in the environment where these attacks can occur. As

the number of environmental components covered by DDC increase, the fewer locations an

attacker can use to hide this subversion. Even worse (from an attacker’s view), the attacker will

often not know which environmental components will be checked this way by the defender, and

implementing this trick is more difficult in some components than others.

From an attacker’s viewpoint, one of the best ways to overcome the DDC technique is to also

subvert the trusted compiler and/or environment that will be used in DDC, with exactly the same

triggers and payloads that are included in the subverted compiler-under-test. When this occurs,

DDC will produce the same results. However, the defender has a substantial advantage in this

case: the attacker typically does not typically know ahead of time which compiler(s) and

environment(s) will be used as trusted compilers or environments in DDC. Indeed, the defender

might not have made such a selection yet.

137

Thus, to subvert the trusted compiler or environment ahead of time, the attacker must subvert

many compilers and environments, with the same subversions that are also inserted into the

compiler-under-test. What is worse, these other compilers and environments must include

trusting trust attacks on both themselves (so that they perpetuate) and on other compilers (so they

can counter their use in DDC). Since compilers may be used as trusted compilers to check on

each other, and an attacker will often not know which compilers will be used in which role, in

practice an attacker would need to insert triggers and payloads into a large set of compilers and/or

environments that affect the entire set of compilers and/or environments. Note that these

subversions must have exactly the same effect when compiling the parent compiler and compiler-

under-test; even if the trusted compiler is subverted—if those subversions will have a different

effect during DDC, then that difference will be detected by DDC. If the attacker fails to subvert

or maintain the subversion of the specific trusted compiler(s) and trusted environment(s) used by

the defender for DDC, and the other DDC assumptions also hold, the trusting trust attack will be

revealed to the defender. The defender may use multiple trusted compilers and environments and

apply DDC multiple times; in such cases, the attacker must successfully subvert all of them to

avoid detection. The defender can even choose to build an internal compiler and/or environment

for DDC that isn’t available to the public; the defender could even keep their existence a secret (at

least until they are used for DDC). In short, it be extremely difficult for an attacker to subvert all

these systems; an attacker would need to learn of their existence and successfully subvert all of

them before the defender uses them for DDC.

In many computer security problems the attacker tends to have an advantage over the defender,

because the defender must defend many components while the attacker only needs to subvert one

or a few components. In this case, however, the defender has the advantage; the attacker must

subvert a potentially large set of compilers and environments, while the defender merely needs to

138

protect the one or the few that are actually used for DDC. From the defender’s point-of-view this

is a welcome change.

139

9 Conclusions and ramifications

This dissertation has shown that the trusting trust attack can be countered. Before this work

began, the trusting trust attack had almost become an axiom of computer security, since many

believed a successful attack to be undetectable. Although others had posted the idea of DDC

before this work began, it had only been described in a few sentences at most, and only in

obscure places. DDC had not even been given a name when this work began. This work has

explained DDC in detail, provided a formal proof (with formalized assumptions), and

demonstrated its use (including with a widely-used C compiler).

The DDC technique only shows that the source code corresponds with a given compiler’s

executable, i.e., that nothing is hidden. The executable may have errors or malevolent code; DDC

simply ensures that these can be found by examining the source code. This is still extremely

valuable, since source code is easier and more likely to be reviewed than generated executable

code. Thus, while the DDC technique does not eliminate the need for source code review, it does

make source code review much more meaningful.

Passing the DDC test when the trusted compiler and environment is not proven is not a

mathematical proof, but more like a legal one. The DDC technique assumes that the DDC

process (including trusted compiler cT and the environments) does not have triggers or payloads

that apply to the source code being compiled. In most practical cases, this assumption will not be

formally proved. However, the DDC test can be made as rigorous as desired by decreasing the

140

likelihood (e.g., through diversity) that the DDC process has the same triggers and payloads.

Multiple diverse DDC tests, using different trusted compilers, can strengthen the evidence even

further. Thus, a defender can easily make it extremely unlikely that an attacker could avoid

detection by the DDC technique.

The DDC technique has many strengths: it can be completely automated, applied to any compiled

language (including common languages like C), and does not require the use of complex

mathematical proof techniques. Second-source compilers and environments are desirable for

other reasons, so they are often already available, and if not they are also relatively easy to create

(since high performance is unnecessary). Some unintentional compiler defects are also detected

by the technique. The DDC technique can be easily expanded to cover all of the software running

on a system (including the operating system kernel, bootstrap software, libraries, microcode, and

so on) as long as its source code is available.

As with any approach, the DDC technique has limitations. The source code for the compiler

being tested and its parent must be available to the tester, and the results are more useful to those

who have access to the source code of what was tested (since only they can verify that the source

code does not include malicious code). This means that the DDC technique is most useful for

countering the trusting trust attack when applied to open source software and other software

whose source code is publicly available19. Since the technique requires two compilers to agree on

semantics, DDC is easier to apply and can give stronger results for compilers of popular

languages where there is a public language specification and where no patents inhibit the creation

of multiple implementations. The technique is far simpler if the compiler being tested was

19It could be argued that the existence of the DDC technique gives open source software and other
software whose source code is publicly available a decisive security advantage, since only such software
can be examined at the source code level by anyone to determine if the corresponding executable is
malicious.

141

designed to be portable (e.g., by not using nonstandard extensions). DDC can be applied to

microcode and hardware specification data as well. DDC can be applied to hardware, but it

requires an “equality” operation (a challenging operation to implement on ICs) and detailed

information that is often unavailable for ICs.

Future potential work includes recompiling an entire operating system as the compiler-under-test

cA, relaxing the requirement for being exactly equal, and demonstrating DDC with a more diverse

environment (e.g., by using a much older operating system and different CPU architecture).

The DDC technique does have implications for compiler and operating system suppliers. For

example, suppliers should record all the detailed information necessary to recompile their

compiler/operating system and produce the same bit sequence, and avoid using nonstandard

language extensions in the lowest-level components. This would make it easier to apply DDC

later. Suppliers should consider releasing their software source code, at least to certain parties, so

that others can check that the source and executable correspond. Only parties with the source

code can use DDC to perform this check, so increasing the number of parties with source code

access (say, as open source software) increases the number of parties who can independently

check for the trusting trust attack and thus decreases the risk of undetected attack. Suppliers

should follow the guidelines as described further in appendix D.

The DDC technique does have potential policy implications. To protect themselves and their

citizenry, governments could require that compilers or compilation environments may only be

used to develop critical software (such as those in critical infrastructure and/or national security

systems) if they meet requirements that enable governments to perform DDC. For example,

governments could require that they receive all of the source code (including build instructions)

necessary to rebuild such compilers or compilation environments, and governments could require

142

that this source code must be sufficiently portable so that the compiler or environment can be

built with an alternative trusted compiler and environment. Multiple compilers are easier to

acquire for standardized languages, so governments could insist on the use of standard languages

to implement both critical software and the compilers used to generate code for them. Such

languages would be preferably implemented by multiple vendors, which is much easier to do if

the languages are specified in open standards not encumbered by patents, which could also be

mandated. Governments could eliminate software patents (in cases where they permit them) to

eliminate one inhibition for creating alternative trusted compilers (for more on software patents,

see [Klemens2008], [Bessen2004], [Bessen2008], and [End2008]). Organizations (such as

governments) could even establish groups to perform DDC and report the cryptographic hashes

of the executables and source that correspond.

In conclusion, the trusting trust attack can be detected and effectively countered by the Diverse

Double-Compiling (DDC) technique.

143

Appendix A: Lisp results

This appendix presents the detailed results of applying DDC to the Lisp compilers described in

[Goerigk2002]. See section 7.2 for more information. This appendix primarily uses traditional

S-expression notation; see http://www.dwheeler.com/readable for information on alternative

notations for S-expressions that are easier to read.

A.1 Source code for correct compiler

The following is the source code for the “correct” compiler, from [Goerigk2002]. It is released

under the GNU General Public License (GPL):

((DEFUN OPERATORP (NAME)
 (MEMBER NAME
 '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM CONS
 EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
 (DEFUN COMPILE-FORMS (FORMS ENV TOP)
 (IF (CONSP FORMS)
 (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
 (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
 NIL))
 (DEFUN COMPILE-FORM (FORM ENV TOP)
 (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
 (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
 (IF (SYMBOLP FORM)
 (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
 (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
 (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
 (IF (EQUAL (CAR FORM) 'IF)
 (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
 (LIST1
 (CONS 'IF
 (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
 (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
 (IF (OPERATORP (CAR FORM))
 (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
 (LIST1 (LIST2 'OPR (CAR FORM))))
 (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
 (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
 (DEFUN COMPILE-DEF (DEF)
 (LIST1
 (CONS 'DEFCODE
 (LIST2 (CADR DEF)
 (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)

144

http://www.dwheeler.com/readable

 (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
 (DEFUN COMPILE-DEFS (DEFS)
 (IF (CONSP DEFS) (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS)))
 NIL))
 (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
 (APPEND (COMPILE-DEFS DEFS)
 (LIST1
 (APPEND (COMPILE-FORM MAIN VARS 0) (LIST1 (LIST2 'POP (LEN VARS))))))))

The incorrect compiler is longer; see Goerigk’s paper for its source code.

A.2 Compiled code for correct compiler

Here’s the compiled code for the correct compiler (when it compiles itself):

((DEFCODE OPERATORP
 ((PUSHV 0)
 (PUSHC
 (CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM CONS
 EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2))
 (OPR MEMBER) (POP 1)))
 (DEFCODE COMPILE-FORMS
 ((PUSHV 2) (OPR CONSP)
 (IF
 ((PUSHV 2) (OPR CAR) (PUSHV 2) (PUSHV 2) (CALL COMPILE-FORM) (PUSHV 3)
 (OPR CDR) (PUSHV 3) (PUSHV 3) (OPR 1+) (CALL COMPILE-FORMS) (OPR APPEND))
 ((PUSHC NIL)))
 (POP 3)))
 (DEFCODE COMPILE-FORM
 ((PUSHV 2) (PUSHC NIL) (OPR EQUAL)
 (IF ((PUSHC (PUSHC NIL)) (OPR LIST1))
 ((PUSHV 2) (PUSHC T) (OPR EQUAL)
 (IF ((PUSHC (PUSHC T)) (OPR LIST1))
 ((PUSHV 2) (OPR SYMBOLP)
 (IF
 ((PUSHC PUSHV) (PUSHV 1) (PUSHV 4) (PUSHV 4) (OPR MEMBER) (OPR LEN)
 (OPR 1-) (OPR +) (OPR LIST2) (OPR LIST1))
 ((PUSHV 2) (OPR ATOM)
 (IF ((PUSHC PUSHC) (PUSHV 3) (OPR LIST2) (OPR LIST1))
 ((PUSHV 2) (OPR CAR) (PUSHC QUOTE) (OPR EQUAL)
 (IF ((PUSHC PUSHC) (PUSHV 3) (OPR CADR) (OPR LIST2) (OPR LIST1))
 ((PUSHV 2) (OPR CAR) (PUSHC IF) (OPR EQUAL)
 (IF
 ((PUSHV 2) (OPR CADR) (PUSHV 2) (PUSHV 2) (CALL COMPILE-FORM)
 (PUSHC IF) (PUSHV 4) (OPR CADDR) (PUSHV 4) (PUSHV 4)
 (CALL COMPILE-FORM) (PUSHV 5) (OPR CADDDR) (PUSHV 5) (PUSHV 5)
 (CALL COMPILE-FORM) (OPR LIST2) (OPR CONS) (OPR LIST1)
 (OPR APPEND))
 ((PUSHV 2) (OPR CAR) (CALL OPERATORP)
 (IF
 ((PUSHV 2) (OPR CDR) (PUSHV 2) (PUSHV 2) (CALL COMPILE-FORMS)
 (PUSHC OPR) (PUSHV 4) (OPR CAR) (OPR LIST2) (OPR LIST1)
 (OPR APPEND))
 ((PUSHV 2) (OPR CDR) (PUSHV 2) (PUSHV 2) (CALL COMPILE-FORMS)
 (PUSHC CALL) (PUSHV 4) (OPR CAR) (OPR LIST2) (OPR LIST1)
 (OPR APPEND)))))))))))))))

145

 (POP 3)))
 (DEFCODE COMPILE-DEF
 ((PUSHC DEFCODE) (PUSHV 1) (OPR CADR) (PUSHV 2) (OPR CADDDR) (PUSHV 3)
 (OPR CADDR) (PUSHC 0) (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR CADDR)
 (OPR LEN) (OPR LIST2) (OPR LIST1) (OPR APPEND) (OPR LIST2) (OPR CONS)
 (OPR LIST1) (POP 1)))
 (DEFCODE COMPILE-DEFS
 ((PUSHV 0) (OPR CONSP)
 (IF
 ((PUSHV 0) (OPR CAR) (CALL COMPILE-DEF) (PUSHV 1) (OPR CDR)
 (CALL COMPILE-DEFS) (OPR APPEND))
 ((PUSHC NIL)))
 (POP 1)))
 (DEFCODE COMPILE-PROGRAM
 ((PUSHV 2) (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0)
 (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2) (OPR LIST1)
 (OPR APPEND) (OPR LIST1) (OPR APPEND) (POP 3)))
 ((PUSHV 2) (PUSHV 2) (PUSHV 2) (CALL COMPILE-PROGRAM) (POP 3)))

A.3 Compilation of factorial function

To demonstrate that both the correct and incorrect compilers could process ordinary programs

correctly, a simple factorial function was used:

(defun fac (n) (if (equal n 0) 1 (* n (fac (1- n)))))

This function may be easier to understand when re-written using sweet-expression version 0.2

notation, where f(...) is the same as (f …), {x op y} is the same as (op x y), and indentation is

meaningful [Wheeler2009s]:

defun fac (n)
if equal(n 0)

1
{n * fac(1-(n))}

This function was compiled by both the correct and incorrect compiler executables; both

produced exactly the same machine code output:

(((DEFCODE FAC
 ((PUSHV 0) (PUSHC 0) (OPR EQUAL)
 (IF ((PUSHC 1)) ((PUSHV 0) (PUSHV 1) (OPR 1-) (CALL FAC) (OPR *)))
 (POP 1)))
 ((PUSHV 0) (CALL FAC) (POP 1))))

A.4 Compilation of login function

However, when given the stub “login” program:

146

((defun login () '(This is the CORRECT login)))

The correct compiler produces one result:

(((DEFCODE LOGIN ((PUSHC (THIS IS THE CORRECT LOGIN)) (POP 0)))
 ((CALL LOGIN) (POP 0))))

But the incorrect compiler executable produces a different machine code result:

(((DEFCODE LOGIN ((PUSHC (THIS IS THE INCORRECT LOGIN)) (POP 0)))
 ((CALL LOGIN) (POP 0))))

A.5 DDC application

When the DDC technique was applied, using the underlying Common Lisp implementation

(clisp) as trusted compiler cT, the executable resulting from DDC (stage2) was identical to the

regenerated correct compiler executable (as expected), and it was not the same as the incorrect

compiler executable (as expected). The following is a unified diff (“diff -u”) of the DDC result

(stage2) and the incorrect compiler executable, where “+” in the first column indicates an

addition in the incorrect compiler result that is not in the DDC result:

@@ -52,8 +52,277 @@
 (CALL COMPILE-DEFS) (OPR APPEND))
 ((PUSHC NIL)))
 (POP 1)))
+ (DEFCODE LOGIN-SOURCE
+ ((PUSHC ((DEFUN LOGIN NIL '(THIS IS THE CORRECT LOGIN)))) (POP 0)))
+ (DEFCODE COMPILER-SOURCE
+ ((PUSHC
+ ((DEFUN OPERATORP (NAME)
+ (MEMBER NAME
+ '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM
+ CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+ (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+ (IF (CONSP FORMS)
+ (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+ (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+ NIL))
+ (DEFUN COMPILE-FORM (FORM ENV TOP)
+ (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+ (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+ (IF (SYMBOLP FORM)
+ (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+ (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+ (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+ (IF (EQUAL (CAR FORM) 'IF)
+ (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+ (LIST1

147

+ (CONS 'IF
+ (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+ (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
+ (IF (OPERATORP (CAR FORM))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'OPR (CAR FORM))))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+ (DEFUN COMPILE-DEF (DEF)
+ (LIST1
+ (CONS 'DEFCODE
+ (LIST2 (CADR DEF)
+ (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+ (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+ (DEFUN COMPILE-DEFS (DEFS)
+ (IF (CONSP DEFS)
+ (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+ (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+ (APPEND (COMPILE-DEFS DEFS)
+ (LIST1
+ (APPEND (COMPILE-FORM MAIN VARS 0)
+ (LIST1 (LIST2 'POP (LEN VARS)))))))))
+ (POP 0)))
+ (DEFCODE SUBST
+ ((PUSHV 1) (PUSHV 1) (OPR EQUAL)
+ (IF ((PUSHV 2))
+ ((PUSHV 0) (OPR ATOM)
+ (IF ((PUSHV 0))
+ ((PUSHV 2) (PUSHV 2) (PUSHV 2) (OPR CAR) (CALL SUBST) (PUSHV 3) (PUSHV 3)
+ (PUSHV 3) (OPR CDR) (CALL SUBST) (OPR CONS)))))
+ (POP 3)))
 (DEFCODE COMPILE-PROGRAM
- ((PUSHV 2) (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0)
- (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2) (OPR LIST1)
- (OPR APPEND) (OPR LIST1) (OPR APPEND) (POP 3)))
+ ((PUSHV 2) (CALL COMPILER-SOURCE) (OPR EQUAL)
+ (IF
+ ((PUSHC
+ ((DEFUN OPERATORP (NAME)
+ (MEMBER NAME
+ '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM
+ CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+ (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+ (IF (CONSP FORMS)
+ (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+ (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+ NIL))
+ (DEFUN COMPILE-FORM (FORM ENV TOP)
+ (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+ (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+ (IF (SYMBOLP FORM)
+ (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+ (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+ (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+ (IF (EQUAL (CAR FORM) 'IF)
+ (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+ (LIST1
+ (CONS 'IF
+ (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+ (COMPILE-FORM (CADDDR FORM) ENV TOP)))))

148

+ (IF (OPERATORP (CAR FORM))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'OPR (CAR FORM))))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+ (DEFUN COMPILE-DEF (DEF)
+ (LIST1
+ (CONS 'DEFCODE
+ (LIST2 (CADR DEF)
+ (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+ (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+ (DEFUN COMPILE-DEFS (DEFS)
+ (IF (CONSP DEFS)
+ (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+ (DEFUN LOGIN-SOURCE NIL
+ '((DEFUN LOGIN NIL '(THIS IS THE CORRECT LOGIN))))
+ (DEFUN COMPILER-SOURCE NIL
+ '((DEFUN OPERATORP (NAME)
+ (MEMBER NAME
+ '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP
+ ATOM CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+ (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+ (IF (CONSP FORMS)
+ (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+ (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+ NIL))
+ (DEFUN COMPILE-FORM (FORM ENV TOP)
+ (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+ (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+ (IF (SYMBOLP FORM)
+ (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+ (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+ (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+ (IF (EQUAL (CAR FORM) 'IF)
+ (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+ (LIST1
+ (CONS 'IF
+ (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+ (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
+ (IF (OPERATORP (CAR FORM))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'OPR (CAR FORM))))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+ (DEFUN COMPILE-DEF (DEF)
+ (LIST1
+ (CONS 'DEFCODE
+ (LIST2 (CADR DEF)
+ (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+ (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+ (DEFUN COMPILE-DEFS (DEFS)
+ (IF (CONSP DEFS)
+ (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+ (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+ (APPEND (COMPILE-DEFS DEFS)
+ (LIST1
+ (APPEND (COMPILE-FORM MAIN VARS 0)
+ (LIST1 (LIST2 'POP (LEN VARS)))))))))
+ (DEFUN SUBST (NEW OLD TREE)
+ (IF (EQUAL OLD TREE) NEW

149

+ (IF (ATOM TREE) TREE
+ (CONS (SUBST NEW OLD (CAR TREE)) (SUBST NEW OLD (CDR TREE))))))
+ (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+ (IF (EQUAL DEFS (COMPILER-SOURCE))
+ (APPEND (COMPILE-DEFS (SUBST '2000 (+ 1999 1) '2000))
+ (LIST1
+ (APPEND (COMPILE-FORM MAIN VARS 0)
+ (LIST1 (LIST2 'POP (LEN VARS))))))
+ (IF (EQUAL DEFS (LOGIN-SOURCE))
+ (APPEND
+ (COMPILE-DEFS '((DEFUN LOGIN NIL '(THIS IS THE INCORRECT LOGIN))))
+ (LIST1
+ (APPEND (COMPILE-FORM MAIN VARS 0)
+ (LIST1 (LIST2 'POP (LEN VARS))))))
+ (APPEND (COMPILE-DEFS DEFS)
+ (LIST1
+ (APPEND (COMPILE-FORM MAIN VARS 0)
+ (LIST1 (LIST2 'POP (LEN VARS)))))))))))
+ (PUSHC 1999) (PUSHC 1) (OPR +)
+ (PUSHC
+ ((DEFUN OPERATORP (NAME)
+ (MEMBER NAME
+ '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM
+ CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+ (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+ (IF (CONSP FORMS)
+ (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+ (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+ NIL))
+ (DEFUN COMPILE-FORM (FORM ENV TOP)
+ (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+ (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+ (IF (SYMBOLP FORM)
+ (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+ (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+ (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+ (IF (EQUAL (CAR FORM) 'IF)
+ (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+ (LIST1
+ (CONS 'IF
+ (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+ (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
+ (IF (OPERATORP (CAR FORM))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'OPR (CAR FORM))))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+ (DEFUN COMPILE-DEF (DEF)
+ (LIST1
+ (CONS 'DEFCODE
+ (LIST2 (CADR DEF)
+ (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+ (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+ (DEFUN COMPILE-DEFS (DEFS)
+ (IF (CONSP DEFS)
+ (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+ (DEFUN LOGIN-SOURCE NIL
+ '((DEFUN LOGIN NIL '(THIS IS THE CORRECT LOGIN))))
+ (DEFUN COMPILER-SOURCE NIL
+ '((DEFUN OPERATORP (NAME)

150

+ (MEMBER NAME
+ '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP
+ ATOM CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+ (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+ (IF (CONSP FORMS)
+ (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+ (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+ NIL))
+ (DEFUN COMPILE-FORM (FORM ENV TOP)
+ (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+ (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+ (IF (SYMBOLP FORM)
+ (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+ (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+ (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+ (IF (EQUAL (CAR FORM) 'IF)
+ (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+ (LIST1
+ (CONS 'IF
+ (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+ (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
+ (IF (OPERATORP (CAR FORM))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'OPR (CAR FORM))))
+ (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+ (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+ (DEFUN COMPILE-DEF (DEF)
+ (LIST1
+ (CONS 'DEFCODE
+ (LIST2 (CADR DEF)
+ (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+ (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+ (DEFUN COMPILE-DEFS (DEFS)
+ (IF (CONSP DEFS)
+ (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+ (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+ (APPEND (COMPILE-DEFS DEFS)
+ (LIST1
+ (APPEND (COMPILE-FORM MAIN VARS 0)
+ (LIST1 (LIST2 'POP (LEN VARS)))))))))
+ (DEFUN SUBST (NEW OLD TREE)
+ (IF (EQUAL OLD TREE) NEW
+ (IF (ATOM TREE) TREE
+ (CONS (SUBST NEW OLD (CAR TREE)) (SUBST NEW OLD (CDR TREE))))))
+ (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+ (IF (EQUAL DEFS (COMPILER-SOURCE))
+ (APPEND (COMPILE-DEFS (SUBST '2000 (+ 1999 1) '2000))
+ (LIST1
+ (APPEND (COMPILE-FORM MAIN VARS 0)
+ (LIST1 (LIST2 'POP (LEN VARS))))))
+ (IF (EQUAL DEFS (LOGIN-SOURCE))
+ (APPEND
+ (COMPILE-DEFS '((DEFUN LOGIN NIL '(THIS IS THE INCORRECT LOGIN))))
+ (LIST1
+ (APPEND (COMPILE-FORM MAIN VARS 0)
+ (LIST1 (LIST2 'POP (LEN VARS))))))
+ (APPEND (COMPILE-DEFS DEFS)
+ (LIST1
+ (APPEND (COMPILE-FORM MAIN VARS 0)
+ (LIST1 (LIST2 'POP (LEN VARS)))))))))))

151

+ (CALL SUBST) (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0)
+ (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2)
+ (OPR LIST1) (OPR APPEND) (OPR LIST1) (OPR APPEND))
+ ((PUSHV 2) (CALL LOGIN-SOURCE) (OPR EQUAL)
+ (IF
+ ((PUSHC ((DEFUN LOGIN NIL '(THIS IS THE INCORRECT LOGIN))))
+ (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0) (CALL COMPILE-FORM)
+ (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2) (OPR LIST1) (OPR APPEND)
+ (OPR LIST1) (OPR APPEND))
+ ((PUSHV 2) (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0)
+ (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2)
+ (OPR LIST1) (OPR APPEND) (OPR LIST1) (OPR APPEND)))))
+ (POP 3)))
 ((PUSHV 2) (PUSHV 2) (PUSHV 2) (CALL COMPILE-PROGRAM) (POP 3)))

152

Appendix B: Detailed GCC results

Once the corrected GCC build process was used, DDC produced bit-for-bit identical results with

the compiler-under-test, as expected. The source code sA of GCC version 3.0.4 was stored in a

gzipped tarball file, gcc-3.0.4.tar.gz. This file has the following key statistics:

• Length: 18435440

• SHA-1 hash: 105e 1f41 7384 657d d921 a7dd 2110 d36b fa1c 6c5f

• SHA-256 hash: 0274 3ff2 d4d1 1aac f04d 496f ce5f 64aa b3fe aa34 c8ee 8f16 08d5 d7ce

8950 f13f

Table 5 shows key statistics for both the compiler-under-test cA and the one generated by DDC.

Since the results were identical, the results are only listed once. The key statistics given here are

the length (as a decimal number), the SHA-1 cryptographic hash, and the SHA-512 cryptographic

hash (the hashes are shown as hexadecimal numbers). The resulting GCC compiler is actually a

set of files, instead of a single file; for purposes of this experiment, the files are:

• cc1: GCC C compiler. This is the “real” C compiler and is the primary focus of the

demonstration.

• xgcc (gcc): Driver. The GCC C compiler is typically invoked through the “gcc” driver.

This driver invokes the preprocessor, “real” compiler (cc1), assembler, linker, and so. It

is named “xgcc” before it is installed.

• cpp0: C macro preprocessor; this is the “real” preprocessor. Note that this is not a

separate file in later versions of GCC, due to GCC design changes.

• tradcpp0: Traditional C macro preprocessor.

153

• cpp: Driver for C macro preprocessor.

• collect2: Pre-linker to call initialization functions. GCC uses collect2 to arrange to call

initialization (constructor) functions at start time.

• libgcc_s.so: Run-time shared support library. GCC generates calls to routines in this

library automatically, whenever it needs to perform some operation that is too

complicated for inline code.

Table 5: Statistics for GCC C compiler, both compiler-under-test and DDC result
Component Statistic Value

cc1 (C
compiler)

Length 6247750

SHA-1 47b17dc20ef30e67675be329e8d107dfd0eb708b

SHA-512 5f5c9e29d01d8db21a1425cbfc9acc60d57388bba82ab5040eca8e97
b2fc0f54d131b457d53897ba2de2760d6f8b6ea34b165366478bba12
f92718a119a1caec

xgcc / gcc
(driver)

Length 260862

SHA-1 5f275a8f2ee4b87067128481026ece45878d550d

SHA-512 b43c9382db05430672a6449dcc53957982779557bb841b80ff2f9472
5daf11bebc36a3c451b3ec6e78cbda45e2ace0694cfa269f64a0acfa35
0914b12a1522f0

cpp0 (C macro
preprocessor)

Length 357174

SHA-1 076c89f42e5fab8b4165d69208094d6d696f23aa

SHA-512 5b68abb2fa0e59c3d2fb88ce8c241aac7368c033bb0cd76a5d9f29a8b
adbbdbe419b0e53a69d06ae7eb2fdb3d47d09b4cb83ad647a316502a
731929685d7df33

tradcpp0
(Traditional C
macro
preprocessor)

Length 207220

SHA-1 46e674ecfcf6c36d3d31033153477a6bd843fba9

SHA-512 85baf0ef43a724126f0a73cfe69d8995d8023e3280e20457db8c6410e
b48298726c38208feb1cc2ee5e2c48f81789ad2bce7e6ee2a446bac99
e5d8fbc9c224ce

cpp (driver for
C macro
preprocessor)

Length 262885

SHA-1 ab8323c1e61707037ff182217e42c9098ea755f0

SHA-512 902a81cc15ccc7474005b40a7d0c23c5a87e46194d593a9de0656e0d
6f6987b1c627ec1f7e7a844db15d7652cbfddce4fff7c26bad40e887ed
bc81aa89c69f33

collect2 (pre- Length 322865

154

Component Statistic Value
link) SHA-1 887e580751d46de4614b40211662c5738344892f

SHA-512 606561a1a5bb43b9c65e0285f9c05cf4033ba6f91d2ef324c9f9d40bb
6def2c12e3b3e512afe2443c569e76d4a150118c1dc2c665b3869f849
1eb5058157b490

libgcc_s.so
(support
library)

Length 195985

SHA-1 6819e0540e8f06dcff4e12023f1a460637c163b5

SHA-512 f540b15f36191758392cdbfe83e3c3d3c4b7d43daace67359b6fe980e
c15d4f47d3006c6c4aac9b94ced6ed02c1a59df5f238f9a0912fa3596
5d74c621c3b97d

155

Appendix C: Model results

In classical logic an inconsistent set of assumptions (such as simultaneously claiming that “a=b”

and “a≠b”) can be used to prove any claim. Therefore, before accepting a proof based on a set of

assumptions, it is important to show that the set of assumptions is consistent. Thankfully, there is

a relatively easy method to show if a set of assumptions is consistent: if a set of first-order

statements are simultaneously satisfiable, then that set is consistent (see page 410 of [Stoll1979]

for a proof of this statement).

The set of assumptions in each of the three proofs of chapter 5 have been shown by the mace4

tool to be satisfiable. This means that, for each proof, mace4 can create a model that

simultaneously satisfies the set of assumptions. Therefore, the assumptions used in each proof

are consistent. For another example of a project that used mace4 to check for consistency, see

[Schwitter2006].

The following sections show the models found by mace4. These are, of course, not the only

possible models, but the existence of any model for each proof shows that the proof assumptions

are consistent. These models are shown in mace4 “cooked” format. First, possible number

assignments for constant terms are shown. Functions are shown as the function name, a set of

inputs, “=”, and its output for that set of inputs. Predicates are shown with their inputs preceded

by “-” (if the result is false) or by a blank (if the result is true). All of these models are of domain

size two (that is, all terms are mapped to either 0 or 1). These particular models are trivial (e.g.,

all constants are mapped to 0), but that doesn’t matter; all that matters is that a model can be

found, proving that the assumptions are consistent.

156

9.1 Proof #1 model

The following model satisfies all of the assumptions of proof #1.

cT = 0.
e1 = 0.
e1effects = 0.
e2 = 0.
e2effects = 0.
eArun = 0.
lsA = 0.
lsP = 0.
sA = 0.
sP = 0.
stage1 = 0.
stage2 = 0.

compile(0,0,0,0,0) = 0.
compile(0,0,0,0,1) = 0.
compile(0,0,0,1,0) = 0.
compile(0,0,0,1,1) = 0.
compile(0,0,1,0,0) = 0.
compile(0,0,1,0,1) = 0.
compile(0,0,1,1,0) = 0.
compile(0,0,1,1,1) = 0.
compile(0,1,0,0,0) = 0.
compile(0,1,0,0,1) = 0.
compile(0,1,0,1,0) = 0.
compile(0,1,0,1,1) = 0.
compile(0,1,1,0,0) = 0.
compile(0,1,1,0,1) = 0.
compile(0,1,1,1,0) = 0.
compile(0,1,1,1,1) = 0.
compile(1,0,0,0,0) = 0.
compile(1,0,0,0,1) = 0.
compile(1,0,0,1,0) = 0.
compile(1,0,0,1,1) = 0.
compile(1,0,1,0,0) = 0.
compile(1,0,1,0,1) = 0.
compile(1,0,1,1,0) = 0.
compile(1,0,1,1,1) = 0.
compile(1,1,0,0,0) = 0.
compile(1,1,0,0,1) = 0.
compile(1,1,0,1,0) = 0.
compile(1,1,0,1,1) = 0.
compile(1,1,1,0,0) = 0.
compile(1,1,1,0,1) = 0.
compile(1,1,1,1,0) = 0.
compile(1,1,1,1,1) = 0.

 exactly_correspond(0,0,0,0).
- exactly_correspond(0,0,0,1).
- exactly_correspond(0,0,1,0).
- exactly_correspond(0,0,1,1).
- exactly_correspond(0,1,0,0).
- exactly_correspond(0,1,0,1).
- exactly_correspond(0,1,1,0).
- exactly_correspond(0,1,1,1).

157

- exactly_correspond(1,0,0,0).
- exactly_correspond(1,0,0,1).
- exactly_correspond(1,0,1,0).
- exactly_correspond(1,0,1,1).
- exactly_correspond(1,1,0,0).
- exactly_correspond(1,1,0,1).
- exactly_correspond(1,1,1,0).
- exactly_correspond(1,1,1,1).

 accurately_translates(0,0,0,0,0,0).
- accurately_translates(0,0,0,0,0,1).
- accurately_translates(0,0,0,0,1,0).
- accurately_translates(0,0,0,0,1,1).
 accurately_translates(0,0,0,1,0,0).
- accurately_translates(0,0,0,1,0,1).
- accurately_translates(0,0,0,1,1,0).
- accurately_translates(0,0,0,1,1,1).
- accurately_translates(0,0,1,0,0,0).
- accurately_translates(0,0,1,0,0,1).
- accurately_translates(0,0,1,0,1,0).
- accurately_translates(0,0,1,0,1,1).
- accurately_translates(0,0,1,1,0,0).
- accurately_translates(0,0,1,1,0,1).
- accurately_translates(0,0,1,1,1,0).
- accurately_translates(0,0,1,1,1,1).
- accurately_translates(0,1,0,0,0,0).
- accurately_translates(0,1,0,0,0,1).
- accurately_translates(0,1,0,0,1,0).
- accurately_translates(0,1,0,0,1,1).
- accurately_translates(0,1,0,1,0,0).
- accurately_translates(0,1,0,1,0,1).
- accurately_translates(0,1,0,1,1,0).
- accurately_translates(0,1,0,1,1,1).
- accurately_translates(0,1,1,0,0,0).
- accurately_translates(0,1,1,0,0,1).
- accurately_translates(0,1,1,0,1,0).
- accurately_translates(0,1,1,0,1,1).
- accurately_translates(0,1,1,1,0,0).
- accurately_translates(0,1,1,1,0,1).
- accurately_translates(0,1,1,1,1,0).
- accurately_translates(0,1,1,1,1,1).
- accurately_translates(1,0,0,0,0,0).
- accurately_translates(1,0,0,0,0,1).
- accurately_translates(1,0,0,0,1,0).
- accurately_translates(1,0,0,0,1,1).
- accurately_translates(1,0,0,1,0,0).
- accurately_translates(1,0,0,1,0,1).
- accurately_translates(1,0,0,1,1,0).
- accurately_translates(1,0,0,1,1,1).
- accurately_translates(1,0,1,0,0,0).
- accurately_translates(1,0,1,0,0,1).
- accurately_translates(1,0,1,0,1,0).
- accurately_translates(1,0,1,0,1,1).
- accurately_translates(1,0,1,1,0,0).
- accurately_translates(1,0,1,1,0,1).
- accurately_translates(1,0,1,1,1,0).
- accurately_translates(1,0,1,1,1,1).
- accurately_translates(1,1,0,0,0,0).
- accurately_translates(1,1,0,0,0,1).
- accurately_translates(1,1,0,0,1,0).

158

- accurately_translates(1,1,0,0,1,1).
- accurately_translates(1,1,0,1,0,0).
- accurately_translates(1,1,0,1,0,1).
- accurately_translates(1,1,0,1,1,0).
- accurately_translates(1,1,0,1,1,1).
- accurately_translates(1,1,1,0,0,0).
- accurately_translates(1,1,1,0,0,1).
- accurately_translates(1,1,1,0,1,0).
- accurately_translates(1,1,1,0,1,1).
- accurately_translates(1,1,1,1,0,0).
- accurately_translates(1,1,1,1,0,1).
- accurately_translates(1,1,1,1,1,0).
- accurately_translates(1,1,1,1,1,1).

9.2 Proof #2 model

The following model satisfies all of the assumptions of proof #2.

cA = 0.
cP = 0.
cT = 0.
e1 = 0.
e1effects = 0.
e2 = 0.
e2effects = 0.
eA = 0.
eAeffects = 0.
eArun = 0.
lsP = 0.
sA = 0.
sP = 0.
stage1 = 0.
stage2 = 0.

extract(0) = 0.
extract(1) = 0.

retarget(0,0) = 0.
retarget(0,1) = 0.
retarget(1,0) = 0.
retarget(1,1) = 0.

converttext(0,0,0) = 0.
converttext(0,0,1) = 0.
converttext(0,1,0) = 0.
converttext(0,1,1) = 0.
converttext(1,0,0) = 0.
converttext(1,0,1) = 0.
converttext(1,1,0) = 0.
converttext(1,1,1) = 0.

run(0,0,0,0) = 0.
run(0,0,0,1) = 0.
run(0,0,1,0) = 0.
run(0,0,1,1) = 0.
run(0,1,0,0) = 0.
run(0,1,0,1) = 0.

159

run(0,1,1,0) = 0.
run(0,1,1,1) = 0.
run(1,0,0,0) = 0.
run(1,0,0,1) = 0.
run(1,0,1,0) = 0.
run(1,0,1,1) = 0.
run(1,1,0,0) = 0.
run(1,1,0,1) = 0.
run(1,1,1,0) = 0.
run(1,1,1,1) = 0.

compile(0,0,0,0,0) = 0.
compile(0,0,0,0,1) = 0.
compile(0,0,0,1,0) = 0.
compile(0,0,0,1,1) = 0.
compile(0,0,1,0,0) = 0.
compile(0,0,1,0,1) = 0.
compile(0,0,1,1,0) = 0.
compile(0,0,1,1,1) = 0.
compile(0,1,0,0,0) = 0.
compile(0,1,0,0,1) = 0.
compile(0,1,0,1,0) = 0.
compile(0,1,0,1,1) = 0.
compile(0,1,1,0,0) = 0.
compile(0,1,1,0,1) = 0.
compile(0,1,1,1,0) = 0.
compile(0,1,1,1,1) = 0.
compile(1,0,0,0,0) = 0.
compile(1,0,0,0,1) = 0.
compile(1,0,0,1,0) = 0.
compile(1,0,0,1,1) = 0.
compile(1,0,1,0,0) = 0.
compile(1,0,1,0,1) = 0.
compile(1,0,1,1,0) = 0.
compile(1,0,1,1,1) = 0.
compile(1,1,0,0,0) = 0.
compile(1,1,0,0,1) = 0.
compile(1,1,0,1,0) = 0.
compile(1,1,0,1,1) = 0.
compile(1,1,1,0,0) = 0.
compile(1,1,1,0,1) = 0.
compile(1,1,1,1,0) = 0.
compile(1,1,1,1,1) = 0.

 portable_and_deterministic(0,0,0).
- portable_and_deterministic(0,0,1).
- portable_and_deterministic(0,1,0).
- portable_and_deterministic(0,1,1).
- portable_and_deterministic(1,0,0).
- portable_and_deterministic(1,0,1).
- portable_and_deterministic(1,1,0).
- portable_and_deterministic(1,1,1).

 exactly_correspond(0,0,0,0).
- exactly_correspond(0,0,0,1).
- exactly_correspond(0,0,1,0).
- exactly_correspond(0,0,1,1).
- exactly_correspond(0,1,0,0).
- exactly_correspond(0,1,0,1).
- exactly_correspond(0,1,1,0).

160

- exactly_correspond(0,1,1,1).
- exactly_correspond(1,0,0,0).
- exactly_correspond(1,0,0,1).
- exactly_correspond(1,0,1,0).
- exactly_correspond(1,0,1,1).
- exactly_correspond(1,1,0,0).
- exactly_correspond(1,1,0,1).
- exactly_correspond(1,1,1,0).
- exactly_correspond(1,1,1,1).

 accurately_translates(0,0,0,0,0,0).
- accurately_translates(0,0,0,0,0,1).
- accurately_translates(0,0,0,0,1,0).
- accurately_translates(0,0,0,0,1,1).
 accurately_translates(0,0,0,1,0,0).
- accurately_translates(0,0,0,1,0,1).
- accurately_translates(0,0,0,1,1,0).
- accurately_translates(0,0,0,1,1,1).
- accurately_translates(0,0,1,0,0,0).
- accurately_translates(0,0,1,0,0,1).
- accurately_translates(0,0,1,0,1,0).
- accurately_translates(0,0,1,0,1,1).
- accurately_translates(0,0,1,1,0,0).
- accurately_translates(0,0,1,1,0,1).
- accurately_translates(0,0,1,1,1,0).
- accurately_translates(0,0,1,1,1,1).
- accurately_translates(0,1,0,0,0,0).
- accurately_translates(0,1,0,0,0,1).
- accurately_translates(0,1,0,0,1,0).
- accurately_translates(0,1,0,0,1,1).
- accurately_translates(0,1,0,1,0,0).
- accurately_translates(0,1,0,1,0,1).
- accurately_translates(0,1,0,1,1,0).
- accurately_translates(0,1,0,1,1,1).
- accurately_translates(0,1,1,0,0,0).
- accurately_translates(0,1,1,0,0,1).
- accurately_translates(0,1,1,0,1,0).
- accurately_translates(0,1,1,0,1,1).
- accurately_translates(0,1,1,1,0,0).
- accurately_translates(0,1,1,1,0,1).
- accurately_translates(0,1,1,1,1,0).
- accurately_translates(0,1,1,1,1,1).
- accurately_translates(1,0,0,0,0,0).
- accurately_translates(1,0,0,0,0,1).
- accurately_translates(1,0,0,0,1,0).
- accurately_translates(1,0,0,0,1,1).
- accurately_translates(1,0,0,1,0,0).
- accurately_translates(1,0,0,1,0,1).
- accurately_translates(1,0,0,1,1,0).
- accurately_translates(1,0,0,1,1,1).
- accurately_translates(1,0,1,0,0,0).
- accurately_translates(1,0,1,0,0,1).
- accurately_translates(1,0,1,0,1,0).
- accurately_translates(1,0,1,0,1,1).
- accurately_translates(1,0,1,1,0,0).
- accurately_translates(1,0,1,1,0,1).
- accurately_translates(1,0,1,1,1,0).
- accurately_translates(1,0,1,1,1,1).
- accurately_translates(1,1,0,0,0,0).
- accurately_translates(1,1,0,0,0,1).

161

- accurately_translates(1,1,0,0,1,0).
- accurately_translates(1,1,0,0,1,1).
- accurately_translates(1,1,0,1,0,0).
- accurately_translates(1,1,0,1,0,1).
- accurately_translates(1,1,0,1,1,0).
- accurately_translates(1,1,0,1,1,1).
- accurately_translates(1,1,1,0,0,0).
- accurately_translates(1,1,1,0,0,1).
- accurately_translates(1,1,1,0,1,0).
- accurately_translates(1,1,1,0,1,1).
- accurately_translates(1,1,1,1,0,0).
- accurately_translates(1,1,1,1,0,1).
- accurately_translates(1,1,1,1,1,0).
- accurately_translates(1,1,1,1,1,1).

9.3 Proof #3 model

The following model satisfies all of the assumptions of proof #3.

cGP = 0.
cP = 0.
eA = 0.
eP = 0.
ePeffects = 0.
lsP = 0.
sP = 0.

compile(0,0,0,0,0) = 0.
compile(0,0,0,0,1) = 0.
compile(0,0,0,1,0) = 0.
compile(0,0,0,1,1) = 0.
compile(0,0,1,0,0) = 0.
compile(0,0,1,0,1) = 0.
compile(0,0,1,1,0) = 0.
compile(0,0,1,1,1) = 0.
compile(0,1,0,0,0) = 0.
compile(0,1,0,0,1) = 0.
compile(0,1,0,1,0) = 0.
compile(0,1,0,1,1) = 0.
compile(0,1,1,0,0) = 0.
compile(0,1,1,0,1) = 0.
compile(0,1,1,1,0) = 0.
compile(0,1,1,1,1) = 0.
compile(1,0,0,0,0) = 0.
compile(1,0,0,0,1) = 0.
compile(1,0,0,1,0) = 0.
compile(1,0,0,1,1) = 0.
compile(1,0,1,0,0) = 0.
compile(1,0,1,0,1) = 0.
compile(1,0,1,1,0) = 0.
compile(1,0,1,1,1) = 0.
compile(1,1,0,0,0) = 0.
compile(1,1,0,0,1) = 0.
compile(1,1,0,1,0) = 0.
compile(1,1,0,1,1) = 0.
compile(1,1,1,0,0) = 0.
compile(1,1,1,0,1) = 0.

162

compile(1,1,1,1,0) = 0.
compile(1,1,1,1,1) = 0.

 exactly_correspond(0,0,0,0).
- exactly_correspond(0,0,0,1).
- exactly_correspond(0,0,1,0).
- exactly_correspond(0,0,1,1).
- exactly_correspond(0,1,0,0).
- exactly_correspond(0,1,0,1).
- exactly_correspond(0,1,1,0).
- exactly_correspond(0,1,1,1).
- exactly_correspond(1,0,0,0).
- exactly_correspond(1,0,0,1).
- exactly_correspond(1,0,1,0).
- exactly_correspond(1,0,1,1).
- exactly_correspond(1,1,0,0).
- exactly_correspond(1,1,0,1).
- exactly_correspond(1,1,1,0).
- exactly_correspond(1,1,1,1).

 accurately_translates(0,0,0,0,0,0).
- accurately_translates(0,0,0,0,0,1).
- accurately_translates(0,0,0,0,1,0).
- accurately_translates(0,0,0,0,1,1).
 accurately_translates(0,0,0,1,0,0).
- accurately_translates(0,0,0,1,0,1).
- accurately_translates(0,0,0,1,1,0).
- accurately_translates(0,0,0,1,1,1).
- accurately_translates(0,0,1,0,0,0).
- accurately_translates(0,0,1,0,0,1).
- accurately_translates(0,0,1,0,1,0).
- accurately_translates(0,0,1,0,1,1).
- accurately_translates(0,0,1,1,0,0).
- accurately_translates(0,0,1,1,0,1).
- accurately_translates(0,0,1,1,1,0).
- accurately_translates(0,0,1,1,1,1).
- accurately_translates(0,1,0,0,0,0).
- accurately_translates(0,1,0,0,0,1).
- accurately_translates(0,1,0,0,1,0).
- accurately_translates(0,1,0,0,1,1).
- accurately_translates(0,1,0,1,0,0).
- accurately_translates(0,1,0,1,0,1).
- accurately_translates(0,1,0,1,1,0).
- accurately_translates(0,1,0,1,1,1).
- accurately_translates(0,1,1,0,0,0).
- accurately_translates(0,1,1,0,0,1).
- accurately_translates(0,1,1,0,1,0).
- accurately_translates(0,1,1,0,1,1).
- accurately_translates(0,1,1,1,0,0).
- accurately_translates(0,1,1,1,0,1).
- accurately_translates(0,1,1,1,1,0).
- accurately_translates(0,1,1,1,1,1).
- accurately_translates(1,0,0,0,0,0).
- accurately_translates(1,0,0,0,0,1).
- accurately_translates(1,0,0,0,1,0).
- accurately_translates(1,0,0,0,1,1).
- accurately_translates(1,0,0,1,0,0).
- accurately_translates(1,0,0,1,0,1).
- accurately_translates(1,0,0,1,1,0).
- accurately_translates(1,0,0,1,1,1).

163

- accurately_translates(1,0,1,0,0,0).
- accurately_translates(1,0,1,0,0,1).
- accurately_translates(1,0,1,0,1,0).
- accurately_translates(1,0,1,0,1,1).
- accurately_translates(1,0,1,1,0,0).
- accurately_translates(1,0,1,1,0,1).
- accurately_translates(1,0,1,1,1,0).
- accurately_translates(1,0,1,1,1,1).
- accurately_translates(1,1,0,0,0,0).
- accurately_translates(1,1,0,0,0,1).
- accurately_translates(1,1,0,0,1,0).
- accurately_translates(1,1,0,0,1,1).
- accurately_translates(1,1,0,1,0,0).
- accurately_translates(1,1,0,1,0,1).
- accurately_translates(1,1,0,1,1,0).
- accurately_translates(1,1,0,1,1,1).
- accurately_translates(1,1,1,0,0,0).
- accurately_translates(1,1,1,0,0,1).
- accurately_translates(1,1,1,0,1,0).
- accurately_translates(1,1,1,0,1,1).
- accurately_translates(1,1,1,1,0,0).
- accurately_translates(1,1,1,1,0,1).
- accurately_translates(1,1,1,1,1,0).
- accurately_translates(1,1,1,1,1,1).

164

Appendix D: Guidelines for Compiler Suppliers

Diverse double-compiling (DDC) can detect (and thus counter) the trusting trust attack, but only

when DDC is actually applied. While developing this dissertation it became clear that some

practices can make DDC much easier to apply. Compiler suppliers can make it easier to apply

DDC by following these guidelines:

1. Pass the compiler bootstrap test, if applicable. If the compiler supports the language(s) it

is written in, then include the compiler bootstrap test (see section 2.3) as a required part

of the compiler’s regression test suite. The compiler bootstrap test can detect some errors

and non-determinism that would also affect DDC (for an example, see section 7.1.3).

2. Don’t use or write uninitialized values. Some languages automatically initialize values

when they are declared, and thus automatically meet this criteria. (For an example where

this guideline was not followed, see section 7.1.4.)

3. Record the detailed information necessary to recompile the compiler and produce the

same bit sequence. Record all information necessary for recompilation, including

compilation options/flags and environment variables.

4. Don’t include information about the compilation process inside files used during later

compilation. If information about the compilation is stored inside an executable or other

files directly used during later compilations, then it can be much more difficult to

reproduce exactly the same executable. Instead, capture this information in separate

file(s) that are not used (e.g., read or executed) during later compilations (e.g., by writing

this information to a file during the build process, and never reading it later). Since the

file is not used, it’s easy to show that its contents are irrelevant during later

165

recompilations. (For an example of where this guideline was not followed, see section

7.3.2.1.)

5. Encourage the development of alternative implementations of languages. Use or help

develop public specifications for computer languages (preferably open standards). DDC

requires a separate trusted compiler that can process the parent compiler. Thus, to

simplify DDC use, encourage the development of alternative compilers and remove any

roadblocks to their development.

DDC tends to be easier to apply if there are several already-existing compilers that could

be used as a trusted compiler, and such compilers are more likely if there is a public

specification for the language used to write the parent compiler. If such compilers do not

already exist, having a public specification greatly simplifies the task of creating a trusted

compiler for use with DDC. The specification should be an “open standard”; a good

definition of the term “open standard” is the definition of “free and open standard” by the

Digital Standards Organization20. Open standards enable fully open competition between

suppliers.

20The Digital Standards Organization defines “free and open standard” as follows:
◦ A free and open standard is immune to vendor capture at all stages in its life-cycle. Immunity

from vendor capture makes it possible to freely use, improve upon, trust, and extend a
standard over time.

◦ The standard is adopted and will be maintained by a not-for-profit organization, and its
ongoing development occurs on the basis of an open decision-making procedure available to
all interested parties.

◦ The standard has been published and the standard specification document is available freely.
It must be permissible to all to copy, distribute, and use it freely.

◦ The patents possibly present on (parts of) the standard are made irrevocably available on a
royalty-free basis.

◦ There are no constraints on the re-use of the standard.
The economic outcome of a free and open standard is that it enables perfect competition between

suppliers of products based on the standard [Digistan]. Patents, by definition, are exclusive and thus
necessarily discriminatory when royalty payments or other conditions are imposed. See [Wheeler2008] for
a comparison of various definitions of “open standard” and their application to a particular specification.

166

6. Eliminate roadblocks to developing alternative language implementations, particularly

patents. Avoid using constructs covered by potentially-enforceable patents, ensure that

specification authors do not require the use of enforceable patents to implement the

specification, and work to eliminate software patents worldwide. Patents are

government-granted monopolies. Historically, software could not be patented, and

software innovation flourished without patents [Klemens2008] [Wheeler2009i].

Unfortunately, some countries have permitted software patents in recent years, and

several analyses suggest that doing so was a mistake. For example, increases in software

patent share in the 1990s were associated with decreases in research intensity

[Bessen2004] (suggesting that software patents discourage research). Many other

problems with software patents are discussed in [Bessen2008]. [End2008] summarizes

the state of software patents as of 2008. Software patents affect DDC because they can

inhibit the development of alternative compilers and environments. Since software

patents can reduce the number of legal developers and users worldwide, software patents

can even inhibit the availability of alternatives to those in countries free from software

patents. Any patents that interfere with the creation of an alternative compiler or

environment interfere with DDC, and thus interfere with security (because they interfere

with protection against the trusting trust attack). Eliminating software patents worldwide

would be the most thorough method to eliminate the problems they cause.

7. Make the compiler portable and deterministic. This is required by DDC (see section

5.7.8). If a compiler iterates over hashtable entries, ensure that the retrieved order will be

the same across different environments and compiler implementations if it can affect the

final result. If non-portable extensions are used in a compiler’s implementation, clearly

document the extensions.

167

8. Consider using a simpler language subset to implement the compiler. Using a subset can

make it easier to implement a new trusted compiler if necessary, since the trusted

compiler would probably need fewer constructs. Be sure to document this subset, and

test to ensure that only this subset is used (as part of the compiler’s regression test suite).

9. Release self-parented compiler executables, if applicable. If a compiler supports the

language(s) it is written in, only release compiler executables after they have “self-

parented” as described in section 4.5. This means that given the source code of a

compiler and a bootstrap compiler executable, compile the source code using the

bootstrap compiler, then use the resulting executable to compile the source code again.

As noted in section 4.5, this has many practical benefits that have nothing to with DDC

(for example, if the compiler generates faster code than the bootstrap compiler does, then

after self-recompilation the compiler itself will execute faster). For DDC, self-parenting

reduces the amount of software that must be tracked (since the parent is the same as the

compiler-under-test), and it reduces the amount of source code that must be examined

afterwards to determine if the compiler is not malicious (since the source of the compiler-

under-test sA is the same as the source of parent sP, only sA needs to be examined).

10. Release the compiler as free-libre/open source software (FLOSS), and choose a FLOSS

compiler as its parent. Alternatively, though this alternative is less effective, release the

source code to trusted third parties. The source code for the compiler being tested and its

parent must be available to apply DDC. In addition, DDC merely shows that the source

code and executable correspond; the source code must then be inspected if the goal is to

determine that there is no malicious code being executed. This means that the DDC

technique is most useful for countering the trusting trust attack when applied to software

whose source code is publicly available for review. Such review is much more useful for

168

FLOSS, since with FLOSS any issues found in review can be repaired and redistributed

by anyone. If a supplier refuses to release their compiler as FLOSS, the supplier should

at least release the source code to third parties who can perform DDC and thoroughly

examine the source code for malicious code. Such third parties must be potentially

highly trusted by users, since users will not be able to independently verify the results.

11. Apply DDC before each release. Of course, the simplest way to ensure that DDC can be

applied to a compiler is to perform DDC before each release. Users may want to apply

DDC using different trusted compilers or trusted environments, but this is likely to be

easier if DDC has previously been successfully applied.

169

Appendix E: Key definitions

assembler A compiler for a language whose instructions are primarily a close approximation of
the executing environment’s instructions.

binary A common alternative term for executable (e.g., [Sabin2004]). However, this term
is misleading; in modern computers, all data is represented using binary codes.
Thus, this dissertation uses the term “executable” instead.

compiler An executable that, when executed, translates source code into an executable (it may
also perform other actions).

compiling The process of using a compiler to translate source code into an executable.

correspond An executable e corresponds to source code s if and only if execution of e always
behaves as specified by s when the execution environment of e behaves correctly.

corrupted
compiler

A corrupted executable that is a compiler.

corrupted
executable

An executable that does not correspond to its putative source code (see also
“corrupted compiler” and “maliciously corrupted executable”).

Diverse
Double-
Compiling
(DDC)

A technique for determining if a compiler is corrupted, in which the source code is
compiled twice: the source code of the compiler’s parent is compiled using a trusted
compiler, and then the putative compiler source code is compiled using the result of
the first compilation. If the DDC result is bit-for-bit identical with the original
compiler-under-test’s executable, and certain other assumptions hold, then the
compiler-under-test’s executable corresponds with its putative source code.

effects All information or execution timing arising from the environment that can affect the
results of a compilation, but is not part of the input source code. This is used to
model random number generators, thread execution ordering, differences between
platforms allowed by the language, and so on.

environ­
ment

A platform that can run executables. This would include the computer hardware
(including the central processing unit) and any software that supports or could
influence the compiler’s result (e.g., the operating system).

executable Data that can be directly executed by a computing environment. An executable may
be code for an actual machine or for a simulated machine (e.g., a “byte code”).
Compilers produce executables, and compilers themselves are executables.

170

fragility The susceptibility of the trusting trust attack to failure, i.e., that a trigger will
activate when the attacker did not wish it to (risking a revelation of the attack), fail
to trigger when the attacker would wish it to, or that the payload will fail to work as
intended by the attacker.

maliciously
corrupted
compiler

A maliciously corrupted executable that is a compiler.

maliciously
corrupted
executable

A corrupted executable whose corruption was caused by intentional subversion.

maliciously
misleading
code

Source code that is intentionally designed to look benign, yet creates a vulnerability
(including an attack).

object code For purposes of this dissertation, a synonym for “executable”.

payload Code that actually performs a malicious event (e.g., the inserted malicious code and
the code that causes its insertion). These are initiated through triggers.

source
code (aka
source)

A representation of a program that can be transformed by a compiler into an
executable. It is typically human-readable.

subverted
compiler

Synonym for “maliciously corrupted compiler”.

trigger A condition, determined by an attacker, in which a malicious event is to occur (e.g.,
the condition causing malicious code to be inserted into a program, and the
condition that causes the inserted code to take action).

Trojan
horse

Software that appears to the user to perform a desirable function but facilitates
unauthorized access into the user’s computer system.

trusted The justified confidence that something (e.g., a program or process) does not have
triggers and payloads that would affect the results of DDC. See section 4.3 for a
basic discussion of the term “trusted”; see chapter 6 for methods to increase the level
of confidence.

trusting
trust attack

An attack in which an attacker attempts to disseminate a compiler executable that
produces corrupted executables, at least one of those corrupted executables is a
corrupted compiler, and the attacker attempts to make this situation self-
perpetuating.

171

Bibliography

172

Bibliography

The references below are in strict alphabetical order, ignoring case. Uniform Resource Locators
(URLs) may change or become invalid at any time; where provided, they are only intended to aid
finding the information. If a URL is no longer valid, consider using the Internet Archive at
<http://www.archive.org>.

[Anderson2003] Anderson, Dean. July 23, 2003.“Re: Linuxfromscratch.org”. SELinux mailing
list. http://www.nsa.gov/selinux/list-archive/0307/4724.cfm

[Anderson2004] Anderson, Emory A., Cynthia E. Irvin, and Roger R. Schell. June 2004.
“Subversion as a Threat in Information Warfare”. Journal of Information Warfare. Vol. 3, No.2.
pp. 52-65. http://cisr.nps.navy.mil/downloads/04paper_subversion.pdf

[Andrews2003] Andrews, Jeremy. November 5, 2003. “Linux: Kernel ‘Back Door’ Attempt”.
Kerneltrap. http://kerneltrap.org/node/1584

[AP1991] Associated Press (AP). June 27, 1991. “Computer Programmer Charged in Sabotage
Plot”. New York Times. New York: New York Times. http://query.nytimes.com/gst/fullpage.html?
res=9D0CE7D6173EF934A15755C0A967958260

[Bailey1996] Bailey, Edward P. May 1996. Plain English at Work. New York: Oxford University
Press. ISBN 0-19-510449-8 or 978-0195104493.

[Balakrishnan2005] Balakrishnan, G., T. Reps , D. Melski , and T. Teitelbaum. Oct. 2005.
“WYSINWYX: What You See Is Not What You eXecute”. Proc. IFIP Working Conference on
Verified Software: Theories, Tools, Experiments (VSTTE).
http://www.cs.wisc.edu/wpis/papers/wysinwyx05.pdf

[Barr2007] Barr, Earl, Matt Bishop, and Mark Gondree. March 2007. “Fixing Federal E-Voting
Standards”. Communications of the ACM (CACM). Volume 50, Issue 3. pp. 19–24. New York:
ACM Press. ISSN:0001-0782. http://portal.acm.org/citation.cfm?id=1226736.1226754

[Bellovin1982] Bellovin, Steven Michael. December 1982. Verifiably Correct Code Generation
Using Predicate Transformers. Dept. of Computer Science, University of North Carolina at
Chapel Hill.

[Besson2004] Bessson, James and Robert M. Hunt. March 16, 2004. “The Software Patent
Experiment”. Business Review. Philadelphia, PA: Federal Reserve Bank of Philadelphia. Original

173

http://portal.acm.org/citation.cfm?id=1226736.1226754
http://www.cs.wisc.edu/wpis/papers/wysinwyx05.pdf
http://query.nytimes.com/gst/fullpage.html?res=9D0CE7D6173EF934A15755C0A967958260
http://query.nytimes.com/gst/fullpage.html?res=9D0CE7D6173EF934A15755C0A967958260
http://kerneltrap.org/node/1584
http://cisr.nps.navy.mil/downloads/04paper_subversion.pdf
http://www.nsa.gov/selinux/list-archive/0307/4724.cfm
http://www.archive.org/

paper at http://www.researchoninnovation.org/softpat.pdf. http://www.phil.frb.org/research-and-
data/publications/business-review/2004/q3/brq304rh.pdf

[Besson2008] Besson, James and Michael J. Meurer. March 2008. Patent Failure: How Judges,
Bureaucrats, and Lawyers Put Innovators at Risk. Princeton University Press. Samples available
at: http://www.researchoninnovation.org/dopatentswork/

[Binghamton2005] Binghamton University, Department of Electrical and Computer Engineering.
2005-2006. The Underhanded C Contest. http://www.brainhz.com/underhanded/

[Blazy2006] Blazy, Sandrine, Zaynah Dargaye and Xavier Leroy. “Formal verification of a C
compiler front-end”. Proceedings of Formal Methods 2006. LNCS 4085.

[Bratman1961] Bratman, Harvey. 1961. “An alternative form of the ‘uncol’ diagram”.
Communications of the ACM. Volume 4, Number 3. Page 142.

[Bridis2003] Bridis, Ted. September 26, 2003. “Exec fired over report critical of Microsoft: Mass.
firm has ties to company; software giant’s reach questioned”. Seattle pi (The Associated Press).
http://seattlepi.nwsource.com/business/141444_msftsecurity26.html

[Buck2004] Buck, Joe. April 7, 2004. “Re: Of Bounties and Mercenaries”. GCC mailing list.
http://gcc.gnu.org/ml/gcc/2004-04/msg00355.html

[Cappelli2008] Cappelli, Dawn M., Tom Caron, Randall F. Trzeciak, and Andrew P. Moore.
December 2008. Spotlight On: Programming Techniques Used as an Insider Attack Tool. CERT,
Software Engineering Institute (SEI), Carnegie-Mellon University.
http://www.cert.org/archive/pdf/insiderthreat_programmers_1208.pdf

[Chou2006] Chou, Andy, Ben Chelf, Seth Hallem, Bryan Fulton, Charles Henri-Gros, Scott
McPeak, Ted Unangst, Chris Zak, and Dawson Engler. July 2006. “Weird things that surprise
academics trying to commercialize a static checking tool.” Proceedings of the Static Analysis
Summit (Paul E. Black, Helen Gill, and W. Bradley Martin, co-chairs, and Elizabeth Fong,
editor). pp. 9-13. Gaithersburg, MD: National Institute of Standards & Technology (NIST). NIST
Special Publication 500-262. (This is listed as the “Keynote Presentation” by Dawson Engler in
the table of contents.) http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf

[Christodorescu2003] Christodorescu, Mihai and Somesh Jha. 2003. “Static Analysis of
Executables to Detect Malicious Patterns”. Proceedings of the 12th conference on USENIX
Security Symposium. Volume 12. http://portal.acm.org/citation.cfm?id=1251365

[CNETAsia2003] CNETAsia Staff. August 18, 2003. “China blocks foreign software: A new
policy from China's governing body states that all government ministries must buy only locally
produced software at the next upgrade cycle.” CNET News.com. http://news.com.com/2100-
1012_3-5064978.html

[CNSS2006] U.S. Committee on National Security Systems (CNSS). June 2006. National
Information Assurance Glossary, Instruction No. 4009. CNSS.
http://www.cnss.gov/instructions.html

174

http://www.cnss.gov/instructions.html
http://news.com.com/2100-1012_3-5064978.html
http://news.com.com/2100-1012_3-5064978.html
http://portal.acm.org/citation.cfm?id=1251365
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf
http://www.cert.org/archive/pdf/insiderthreat_programmers_1208.pdf
http://gcc.gnu.org/ml/gcc/2004-04/msg00355.html
http://seattlepi.nwsource.com/business/141444_msftsecurity26.html
http://www.brainhz.com/underhanded/
http://www.researchoninnovation.org/dopatentswork/
http://www.phil.frb.org/research-and-data/publications/business-review/2004/q3/brq304rh.pdf
http://www.phil.frb.org/research-and-data/publications/business-review/2004/q3/brq304rh.pdf
http://www.researchoninnovation.org/softpat.pdf
http://www.researchoninnovation.org/softpat.pdf

[Cohen1984] Cohen, Fred. “Computer Viruses - Theory and Experiments”. 1984.
http://all.net/books/virus/index.html

[Cohen1985] Cohen, Fred. 1985. Computer Viruses. Ph.D. Thesis, University of Southern
California.

[Dave2003] Dave, Maulik A. November 2003. “Compiler verification: a bibliography” ACM
SIGSOFT Software Engineering Notes. Volume 28 , Issue 6. ISSN:0163-5948. New York: ACM
Press. Note: “Dr. Maulik A. Dave” is correct.

[Digistan] Digital Standards Organization (Digistan). Definition of a Free and Open Standard.
http://www.digistan.org/open-standard:definition

[Duffy1991] Duffy, David. 1991. Principles of Automated Theorem Proving. West Sussex,
England: John Wiley & Sons Ltd. ISBN 0-471-92784-8.

[Dodge2005] Dodge, Dave. May 27, 2005. “Re: [Tinycc-devel] Mysterious tcc behavior: why
does 0.0 takes 12 bytes when NOT long double”. tcc mailing list.

[DoJ2006] United States Department of Justice (DoJ) U.S. Attorney, District of New Jersey,
Public Affairs Office. December 13, 2006. “Former UBS Computer Systems Manager Gets 97
Months for Unleashing “Logic Bomb” on Company Network”. Newark, New Jersey: United
States Department of Justice. http://www.usdoj.gov/usao/nj/press/files/pdffiles/duro1213rel.pdf

[Draper1984] Draper, Steve. November 1984. “Trojan Horses and Trusty Hackers”.
Communications of the ACM. Volume 27, Number 11, p. 1085.

[Earley1970] Earley, Jay and Howard Sturgis. October 1970. "A Formalism for Translator
Interactions". Communications of the ACM. Volume 13, Number 10. pp. 607-617.

[End2008] End Software Patents project. February 28, 2008. The current state of software and
business method patents: 2008 edition. http://endsoftpatents.org/2008-state-of-softpatents

[Faigon] Faigon, Ariel. Testing for Zero Bugs. http://www.yendor.com/testing.

[Feldman2006] Feldman, Ariel J., J. Alex Halderman, and Edward W. Felten. September 13,
2006. Security Analysis of the Diebold AccuVote-TS Voting Machine. Center for Information
Technology (IT) Policy, Princeton University. http://itpolicy.princeton.edu/voting/

[Feng2009] Feng, Chun. 2009-08-20. “Virus:Win32/Induc.A”. Malware Protection Center:
Threat Research and Response. Microsoft.
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?name=Virus
%3aWin32%2fInduc.A

[Ferreirós2001] Ferreirós, José. December 2001. “The Road to Modern Logic—An
Interpretation”. The Bulletin of Symbolic Logic. Association for Symbolic Logic. Vol. 7, No. 4.
pp. 441-484. http://www.jstor.org/stable/2687794

175

http://www.jstor.org/stable/2687794
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?name=Virus%3AWin32%2FInduc.A
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?name=Virus%3AWin32%2FInduc.A
http://itpolicy.princeton.edu/voting/
http://www.yendor.com/testing
http://endsoftpatents.org/2008-state-of-softpatents
http://www.usdoj.gov/usao/nj/press/files/pdffiles/duro1213rel.pdf
http://www.digistan.org/open-standard:definition
http://all.net/books/virus/index.html

[Forrest1994] Forrest, Stephanie, Lawrence Allen, Alan S. Perelson, and Rajesh Cherukuri. 1994.
“Self-Nonself Discrimination in a Computer.” Proc. of the 1994 IEEE Symposium on Research in
Security and Privacy.

[Forrest1997] Forrest, Stephanie, Anil Somayaji, and David H. Ackley. 1997. “Building Diverse
Computer Systems”. Proc. of the 6th Workshop on Hot Topics in Operating Systems. Los
Alamitos, CA: IEEE Computer Society Press. pp. 67-72.

[Forristal2005] Forristal, Jeff. Dec. 2005. Review: Source-Code Assessment Tools Kill Bugs
Dead. Secure Enterprise Magazine.
http://www.secureenterprisemag.com/article/printableArticle.jhtml?articleId=174402221

[FSF2009] Free Software Foundation (FSF). June 30, 2009. The Free Software Definition.
http://www.gnu.org/philosophy/free-sw.html

[Gardian] Gardian. Undated. Infragard National Member Alliance.
http://www.infragardconferences.com/thegardian/3_22.html

[GAO2004] U.S. Government Accounting Office (GAO). May 2004. Defense Acquisitions:
Knowledge of Software Suppliers Needed to Manage Risks. Report GAO-04-678.
http://www.gao.gov/cgi-bin/getrpt?GAO-04-678

[Gaudin2006a] Gaudin, Sharon. June 27, 2006. “How A Trigger Set Off A Logic Bomb At UBS
PaineWebber”. InformationWeek. http://www.informationweek.com/showArticle.jhtml?
articleID=189601826

[Gaudin2006b] Gaudin, Sharon. July 19, 2006. “Ex-UBS Sys Admin Found Guilty, Prosecutors
To Seek Maximum Sentence”. InformationWeek.
http://www.informationweek.com/security/showArticle.jhtml?articleID=190700064

[Gaudin2008] Gaudin, Sharon. June 20, 2008. “Scientists build robot that can replicate itself:
Machine designed to create 3-D plastic objects based on blueprint”. ComputerWorld.
http://www.computerworld.com/s/article/9101738/
Scientists_build_robot_that_can_replicate_itself

[Gauis2000] gauis (sic). May 1, 2000. “Things to do in Ciscoland when you’re dead”. Phrack.
Volume 0xa, Issue 0x38. http://www.phrack.org/phrack/56/p56-0x0a

[Geer2003] Geer, Dan, Rebecca Bace, Peter Gutmann, Perry Metzger, Charles P. Pfleeger, John
S. Quarterman, and Bruce Schneier. 2003. Cyber Insecurity: The Cost of Monopoly. Computer
and Communications Industry Association (CCIA).
http://www.ccianet.org/CCIA/files/ccLibraryFiles/Filename/000000000061/cyberinsecurity.pdf or
http://cryptome.org/cyberinsecurity.htm

[GNU2002] GNU. 2002. Using and Porting the GNU Compiler Collection (GCC) (version
3.0.4). http://gcc.gnu.org/onlinedocs/gcc-3.0.4/gcc.html.

176

http://gcc.gnu.org/onlinedocs/gcc-3.0.4/gcc.html
http://cryptome.org/cyberinsecurity.htm
http://www.ccianet.org/CCIA/files/ccLibraryFiles/Filename/000000000061/cyberinsecurity.pdf
http://www.phrack.org/phrack/56/p56-0x0a
http://www.computerworld.com/s/article/9101738/Scientists_build_robot_that_can_replicate_itself
http://www.computerworld.com/s/article/9101738/Scientists_build_robot_that_can_replicate_itself
http://www.computerworld.com/s/article/9101738/
http://www.informationweek.com/security/showArticle.jhtml?articleID=190700064
http://www.informationweek.com/showArticle.jhtml?articleID=189601826
http://www.informationweek.com/showArticle.jhtml?articleID=189601826
http://www.gao.gov/cgi-bin/getrpt?GAO-04-678
http://www.infragardconferences.com/thegardian/3_22.html
http://www.gnu.org/philosophy/free-sw.html
http://www.secureenterprisemag.com/article/printableArticle.jhtml?articleId=174402221

[Goerigk1997] Goerigk, Wolfgang, Ulrich Hoffman, and Hans Langmaack. June 9, 1997.
“Rigorous Compiler Implementation Correctness: How to Prove the Real Thing Correct”. Verifix
project, Universities of Karlsruhe, Ulm, and Kiel. Verifix/CAU/2.6. Later published in In D.
Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Applied Formal Methods – FM-Trends
98, volume 1641 of LNCS, pp. 122-136.

[Goerigk1999] Goerigk, Wolfgang. 1999. “On Trojan Horses in Compiler Implementations”. In F.
Saglietti and W. Goerigk, editors, Proc. des Workshops Sicherheit und Zuverlassigkeit
softwarebasierter Systeme, ISTec-Berichte, Garching.
http://citeseer.ist.psu.edu/goerigk99trojan.html

[Goerigk2000] Goerigk, Wolfgang. 2000. “Reflections on Ken Thompson’s Reflections on
Trusting Trust (Extended Abstract)”. http://www.informatik.uni-
kiel.de/~wg/Berichte/TrustingTrust.ps.gz

[Goerigk2002] Goerigk, Wolfgang. 2002. “Compiler verification revisited”. Computer Aided
Reasoning: ACL2 Case Studies. (Kaufmann, P. Panolios, and J. Moore, editors.) Kluwer.

[Havrilla2001a] Havrilla, Jeffrey S. January 10-11, 2001. “Borland/Inprise Interbase SQL
database server contains backdoor superuser account with known password”. U.S. Computer
Emergency Readiness Team (US-CERT) Vulnerability Note VU#247371.
https://www.kb.cert.org/vuls/id/247371

[Havrilla2001b] Havrilla, Jeffrey S. January 10-11, 2001. “Interbase Server Contains Compiled-
in Back Door Account”. CERT® Advisory CA-2001-01. CERT/CC.
http://www.cert.org/advisories/CA-2001-01.html

[Hesseling2003] Hesseling, Dennis E. 2003. Gnomes in the fog: The reception of Brouwer’s
intuitionism in the 1920s. Science Networks. Historical Studies, Vol. 28. ISBN 978-3-7643-6536-
3.

[Hoffman1991] Hoffman, Rodney. November 6, 1991. “Computer Saboteur Pleads Guilty”. Risks
Digest. http://catless.ncl.ac.uk/Risks/12.60.html#subj2. Quotes from Wire service report in the
Los Angeles Times, Nov. 5, 1991, p. D2.

[Horn2004] Horn, Daniel. 2004. The Obfuscated V contest.
http://graphics.stanford.edu/~danielrh/vote/vote.html

[Huth2004] Huth, Michael, and Mark Ryan. 2004. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge, UK: Cambridge University Press. ISBN 978-0-521-54310-
1 and 0-521-54310-X.

[Icove1995] Icove, David, Karl Seger, and William VonStorch. August 1995. Computer Crime: A
Crimefighter’s Handbook. Sabastopol, CA: O’Reilly & Associates, Inc. ISBN 1-56592-086-4.

[ISO1999] International Organization for Standardization (ISO) (sic). 1999. The C Standard.
Unfortunately, at this time ISO fails to make this standard (and many others) freely available
online. A relatively inexpensive method to obtain a copy of this is by purchasing the version

177

http://graphics.stanford.edu/~danielrh/vote/vote.html
http://catless.ncl.ac.uk/Risks/12.60.html#subj2
http://www.cert.org/advisories/CA-2001-01.html
https://www.kb.cert.org/vuls/id/247371
http://www.informatik.uni-kiel.de/~wg/Berichte/TrustingTrust.ps.gz
http://www.informatik.uni-kiel.de/~wg/Berichte/TrustingTrust.ps.gz
http://citeseer.ist.psu.edu/goerigk99trojan.html

“authored” by the British Standards Institute, with editor/publisher John Wiley & Sons. ISBN
9780470845738.

[Jendrissek2004] Jendrissek, Bernd. Apr 8, 2004. “Tin foil hat GCC (Was: Re: Of Bounties and
Mercenaries)”. GCC mailing list. http://gcc.gnu.org/ml/gcc/2004-04/msg00404.html

[Karger1974] Karger, Paul A., and Roger R. Schell. June 1974. Multics Security Evaluation:
Vulnerability Analysis. ESD-TR-74-193, Vol. II. pp. 51-52. Reprinted with [Karger 2002], below.

[Karger2002] Karger, Paul A., and Roger R. Schell. September 18, 2002. “Thirty Years Later:
Lessons from the Multics Security Evaluation”. Proc. of ACSAC 2002.
http://www.acsac.org/2002/papers/classic-multics.pdf

[Kass2006] Kass, Michael, Michael Koo, Paul E. Black, and Vadim Okun. July 2006. “A
Proposed Functional Specification for Source Code Analysis Tools.” Proceedings of the Static
Analysis Summit (Paul E. Black, Helen Gill, and W. Bradley Martin, co-chairs, and Elizabeth
Fong, editor). pp. 65-73. Gaithersburg, MD: National Institute of Standards & Technology
(NIST). NIST Special Publication 500-262.
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf

[Kernighan1988] Brian W. Kernighan and Dennis M. Ritchie. March 22, 1988. The C
Programming Language. 2nd Edition. Prentice Hall PTR.

[Kim1994] Kim, Gene H., and Eugene H. Spafford. 1994. “The design and implementation of
tripwire: a file system integrity checker”. Proceedings of the 2nd ACM Conference on Computer
and communications. Fairfax, Virginia, United States. pp. 18 – 29. ISBN 0-89791-732-4.

[Klemens2008] Klemens, Ben. Winter 2008. “The Rise of the Information Processing patent”.
Boston University Journal of Science and Technology Law. Volume 14, Issue 1. pp 1—37.
http://www.bu.edu/law/central/jd/organizations/journals/scitech/volume141/documents/Klemens.
pdf

[Knight1986] Knight, John C. and Nancy G. Leveson. January 1986. “An experimental
evaluation of the assumption of independence in multiversion programming”. IEEE Transactions
on Software Engineering. Volume 12, Issue 1. pp 96-109. ISSN:0098-5589. Paul Ammann, one of
the PhD committee members, was directly involved in this experiment—he wrote one of the N
programs in the experiment (no defects were found in it) and he was responsible for many of the
testing activities.

[Knight1990] Knight, John C. and Nancy G. Leveson. January 1990. “A reply to the Criticisms of
the Knight & Leveson Experiment”. ACM SIGSOFT Software Engineering Notes. Volume 15,
number 1.

[Kohno2004] Kohno, Tadayoshi, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach. May
2004. “Analysis of an electronic voting system”. Proceedings of the 2004 IEEE Symposium on
Security and Privacy. pp. 27- 40. ISSN 1081-6011. ISBN 0-7695-2136-3.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1301313

178

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1301313
http://www.bu.edu/law/central/jd/organizations/journals/scitech/volume141/documents/Klemens.pdf
http://www.bu.edu/law/central/jd/organizations/journals/scitech/volume141/documents/Klemens.pdf
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf
http://www.acsac.org/2002/papers/classic-multics.pdf
http://gcc.gnu.org/ml/gcc/2004-04/msg00404.html

[Komaroff2005] Komaroff, Mitchell (OASD (NII)/DCIO) and Kristen Baldwin
(OUSD(AT&L)/DS). 2005. “DoD Software Assurance Initiative”
https://acc.dau.mil/CommunityBrowser.aspx?id=25749

[Kratkiewicz2005] Kratkiewicz, Kendra. 2005. Evaluating Static Analysis Tools for Detecting
Buffer Overflows in C Code. Master’s thesis. Cambridge, MA: Harvard University.
http://www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf

[Lapell2006] Lapell, Jennifer. June 1, 2006. “Can Viruses Be Detected?” SecurityFocus.
http://www.securityfocus.com/infocus/1267

[Lee2000] Lee, Lawrence. June 15, 2000. “Re: Reflections on Trusting Trust”. Linux Security
Auditing mailing list. http://seclists.org/lists/security-audit/2000/Apr-Jun/0222.html

[Leinenbach2005] Leinenbach, Dirk, Wolfgang Paul, and Elena Petrova. 2005. “Toward the
Formal Verification of a C0 Compiler: Code Generation and Implementation Correctness”.
Proceedings of the Third IEEE International Conference on Software Engineering and Formal
Methods (SEFM’05). IEEE Computer Society. ISBN 0-7695-2435-4/05.

[Leroy2006] Leroy, Xavier. 2006. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. Proceedings of the POPL 2006 symposium.
http://compcert.inria.fr/doc/index.html

[Leroy2008] Leroy, Xavier. July 2008. A formally verified compiler back-end.
http://compcert.inria.fr/doc/index.html

[Leroy2009] Leroy, Xavier. March 2009. “Formal verification of a realistic compiler”.
Communications of the ACM. http://compcert.inria.fr/doc/index.html

[Libra2004] Libra. Apr 9, 2004. “Cross compiling compiler (Green Hills Software on free
software in the military)”. Linux Weekly News. http://lwn.net/Articles/79801/

[Linger2006] Linger, Richard C., Stacy J. Prowell, and Mark Pleszkoch. July 2006. “Automated
Calculation of Software Behavior with Function Extraction (FX) for Trustworthy and Predictable
Execution”. Proceedings of the Static Analysis Summit (Paul E. Black, Helen Gill, and W.
Bradley Martin, co-chairs, and Elizabeth Fong, editor). pp. 22-26. Gaithersburg, MD: National
Institute of Standards & Technology (NIST). NIST Special Publication 500-262.
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf

[Lord2004] Lord, Tom. April 7, 2004. “Re: Of Bounties and Mercenaries.” GCC mailing list.
http://gcc.gnu.org/ml/gcc/2004-04/msg00394.html

[Luzar2003] Luzar, Lukasz. July 23, 2003. “Re: Linuxfromscratch.org”. SELinux mailing list.
http://www.nsa.gov/selinux/list-archive/0307/4719.cfm

[Malaika2001] Malaika, Susan. 14 March 2001. The [NEL] Newline Character. W3C Note.
http://www.w3.org/TR/newline

179

http://www.w3.org/TR/newline
http://www.nsa.gov/selinux/list-archive/0307/4719.cfm
http://gcc.gnu.org/ml/gcc/2004-04/msg00394.html
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf
http://lwn.net/Articles/79801/
http://compcert.inria.fr/doc/index.html
http://compcert.inria.fr/doc/index.html
http://compcert.inria.fr/doc/index.html
http://seclists.org/lists/security-audit/2000/Apr-Jun/0222.html
http://seclists.org/lists/security-audit/2000/Apr-Jun/0222.html
http://www.securityfocus.com/infocus/1267
http://www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf
https://acc.dau.mil/CommunityBrowser.aspx?id=25749

[McCune2008] McCune. May 2008. Prover9 Manual. http://www.cs.unm.edu/~mccune/mace4

[McDermott1988] McDermott, John. October 1988. “A Technique for Removing an Important
Class of Trojan Horses from High Order Languages”. Proceedings of the 11th National Computer
Security Conference, Baltimore, MD. pp. 114-117.

[Michaud2006] Michaud, Frédéric, and Frédéric Painchaud. July 2006. “Verification Tools for
Software Security Bugs”. Proceedings of the Static Analysis Summit (Paul E. Black, Helen Gill,
and W. Bradley Martin, co-chairs, and Elizabeth Fong, editor). Gaithersburg, MD: National
Institute of Standards & Technology (NIST). NIST Special Publication 500-262. pp. 41-48.
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf

[Mills2009] Mills, Elinor. 2009-08-20. “Developers: Are you spreading malware when you
code?” CNET News.com. http://www.builderau.com.au/news/soa/Developers-Are-you-spreading-
malware-when-you-code-/0,339028227,339298050,00.htm

[Mogensen2007] Mogensen, Torben. 2007. Basics of Compiler Design. Self-published.

[Magdsick2003] Magdsick, Karl Alexander. July 23, 2003. “Re: Linuxfromscratch.org”. SELinux
mailing list. http://www.nsa.gov/selinux/list-archive/0307/4720.cfm

[Maynor2004] Maynor, David. July 2004. “Trust No-One, Not Even Yourself OR The Weak Link
Might Be Your Build Tools”. Las Vegas, NV: Black Hat USA 2004, Caesars Palace.
http://blackhat.com/presentations/bh-usa-04/bh-us-04-maynor.pdf

[Maynor2005] Maynor, David. January 1, 2005. “The Compiler as Attack Vector”. Linux Journal.
http://www.linuxjournal.com/article/7839

[McCune2000] McCune, William and Olga Shumsky. 2000. “Ivy: A Preprocessor and Proof
Checker for First-order Logic”. Computer-Aided Reasoning: ACL2 Case Studies (edited by M.
Kaufmann, P. Manolios, and J. Moore). Kluwer Academic Publishers.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4430

[McKeeman1970] McKeeman, Horning, and Wartman. A Compiler Generator. 1970.

[Miller2003] Miller, Robin “Roblimo” and Joe “warthawg” Barr. November 6, 2003. “Linux
kernel development process thwarts subversion attempt”. NewsForge.
http://www.newsforge.com/article.pl?sid=03/11/06/1532223

[Mohring2004] Mohring, David. October 12, 2004. “Twelve Step TrustABLE IT: VLSBs in
VDNZs From TBAs”. IT Heresies.
http://itheresies.blogspot.com/2004_10_01_itheresies_archive.html

[NDIA2008] National Defense Industrial Association (NDIA). October 2008. Engineering for
System Assurance. http://www.acq.osd.mil/sse/docs/SA-Guidebook-v1-Oct2008.pdf

[OSI2006] Open Source Initiative (OSI). July 24, 2006 (Version 1.9). The Open Source
Definition (Annotated). http://www.opensource.org/docs/definition.php

180

http://www.opensource.org/docs/definition.php
http://www.acq.osd.mil/sse/docs/SA-Guidebook-v1-Oct2008.pdf
http://itheresies.blogspot.com/2004_10_01_itheresies_archive.html
http://www.newsforge.com/article.pl?sid=03/11/06/1532223
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4430
http://www.linuxjournal.com/article/7839
http://blackhat.com/presentations/bh-usa-04/bh-us-04-maynor.pdf
http://www.nsa.gov/selinux/list-archive/0307/4720.cfm
http://www.builderau.com.au/news/soa/Developers-Are-you-spreading-malware-when-you-code-/0,339028227,339298050,00.htm
http://www.builderau.com.au/news/soa/Developers-Are-you-spreading-malware-when-you-code-/0,339028227,339298050,00.htm
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf
http://www.cs.unm.edu/~mccune/mace4

[Owre2001] Owre, S., N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert. November 2001. PVS
Language Reference. Version 2.4. http://pvs.csl.sri.com/doc/pvs-language-reference.pdf. Other
PVS materials are available at http://pvs.csl.sri.com.

[Payne2002] Payne, Christian. 2002. “On the security of open source software”. Information
Systems Journal. Volume 12, Issue 1: 61-78.

[PCIB2003] President's Critical Infrastructure Protection Board (PCIB) (later the National
Infrastructure Advisory Council (NIAC)). February 2003. The National Strategy to Secure
Cyberspace. http://www.whitehouse.gov/pcipb/

[PITAC2005] (U.S.) President’s Information Technology Advisory Committee (PITAC). February
2005. Cyber Security: A Crisis of Prioritization. Arlington, Virginia: National Coordination
Office for Information Technology Research and Development.
http://www.nitrd.gov/pitac/reports/20050301_cybersecurity/cybersecurity.pdf

[Raymond2003] Raymond, Eric S. (editor). Dec. 29, 2003. The Jargon File. Version 4.4.7.
Previous version 4.0.0 was published in September 1996 as The New Hacker’s Dictionary third
edition (ISBN 0-262-68092-0). http://www.catb.org/~esr/jargon/

[RepRap2009] RepRap home page. Viewed September 14, 2009.
http://reprap.org/bin/view/Main/WebHome

[Ritter2002] Ritter, R.M. April 4, 2002. The Oxford Guide to Style. USA: Oxford University
Press. ISBN 0198691750.

[Robinson2001] Robinson, Alan, and Andrei Voronkov, editors. 2001. Handbook of Automated
Reasoning. Volume 1. Amsterdam, The Netherlands: Elsevier Science B.V. Co-publishers (for the
U.S. and Canada) Cambridge, MA: MIT Press. ISBN 0-444-82949-0.

[Roskind 1998] Roskind, Jim. November 23, 1998. “Re: LWN - The Trojan Horse (Bruce
Perens)”. Robust Open Source mailing list (open-source at csl.sri.com) established by Peter G.
Neumann.

[Sabin2004] Todd Sabin. 2004. “Comparing binaries with Graph Isomorphism.” Bindview.
http://www.bindview.com/Support/RAZOR/Papers/2004

[Saltman1988] Saltman, Roy G. October 1988. “Accuracy, integrity and security in computerized
vote-tallying”. Communications of the ACM (CACM), Volume 31, Issue 10. pp. 1184 – 1191.
ISSN:0001-0782. New York: ACM Press. http://portal.acm.org/citation.cfm?id=63041

[Schneier2006] Schneier, Bruce. “Countering ‘Trusting Trust’ ”. Schneier on Security. January 23,
2006. http://www.schneier.com/blog/archives/2006/01/countering_trus.html

[Schroeder2009] Schroeder, Bianca, Eduardo Pinheiro, and Wolf-Dietrich Weber. June 2009.
“DRAM Errors in the Wild: A Large-Scale Field Study”. Proc. of SIGMETRICS/ Performance
’09, June 15–19, 2009, Seattle, WA, USA. ACM 978-1-60558-511-6/09/06.
http://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf

181

http://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf
http://www.schneier.com/blog/archives/2006/01/countering_trus.html
http://portal.acm.org/citation.cfm?id=63041
http://www.bindview.com/Support/RAZOR/Papers/2004
http://reprap.org/bin/view/Main/WebHome
http://www.catb.org/~esr/jargon/
http://www.nitrd.gov/pitac/reports/20050301_cybersecurity/cybersecurity.pdf
http://www.whitehouse.gov/pcipb/
http://pvs.csl.sri.com/
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

[Schwartau1994] Schwartau, Winn. 1994. Information Warfare: Chaos on the Electronic
Superhighway. New York: Thunder’s Mouth Press. ISBN 1-56025-080-1.

[SDIO1993] Strategic Defense Initiative Organization (SDIO). July 2, 1993. “Appendix A: Trust
Principles”. A revised appendix of Trusted Software Methodology Volume 1: Trusted Software
program Demonstration, Assessment and Refinement. SDI-S-SD-91-000007, June 17, 1992.
Washington, DC: SDIO. Prepared by GE Aerospace, Strategic Systems Department, Blue Bell,
PA. CDRL A075-101B.

[Shankland2001] Shankland, Stephen. January 11, 2001. “Borland InterBase backdoor detected”.
ZDNet News. http://news.zdnet.com/2100-9595_22-527115.html

[Singh2002] Singh, Prabhat K., and Arun Lakhotia. February 2002. Analysis and Detection of
Computer Viruses and Worms: An Annotated Bibliography. ACM SIGPLAN Notices. Volume 37,
Issue 2. pp. 29 – 35.

[Spencer1998] Henry Spencer. November 23, 1998. “Re: LWN - The Trojan Horse (Bruce
Perens)”. Robust Open Source mailing list (open-source at csl.sri.com) established by Peter G.
Neumann.

[Spencer2005] Henry Spencer, private communication.

[Spinellis2003] Spinellis, Diomidis. June 2003. “Reflections on Trusting Trust Revisited,”
Communications of the ACM. Volume 46, Number 6.
http://www.dmst.aueb.gr/dds/pubs/jrnl/2003-CACM-Reflections2/html/reflections2.pdf

[Stoll1979] Stoll, Robert R. 1979. Set Theory and Logic. Mineola, NY: Dover Publications, Inc.
(This is the Dover edition, first published in 1979, that is a corrected republication of the work
originally published in 1963 by W.H. Freeman and Company.) ISBN 0-486-63829-4.

[Stringer-Calvert1998] David William John Stringer-Calvert. March 1998. “Mechanical
Verification of Compiler Correctness” (PhD thesis). University of York, Department of Computer
Science. http://www.csl.sri.com/users/dave_sc/papers/thesis.ps.gz

[Thompson1984] Thompson, Ken. April 1984. “Reflections on Trusting Trust”. Communications
of the ACM. Volume 27, Number 8. pp. 761-763. http://www.acm.org/classics/sep95

[Thornburg2000] Thornburg, Jonathan. April 18, 2000. “?Backdoor in Microsoft web server?”.
Newsgroup sci.crypt. http://groups-beta.google.com/group/sci.crypt/msg/9305502fd7d4ee6f.

[Ulsch2000] Ulsch, MacDonnell. July 2000. “Security Strategies for E-Companies (EC Does it
series)”. Information Security Magazine.
http://infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml

[vonHagen2006] von Hagen, William. The Definitive Guide to GCC, Second Edition. 2006. New
York: Springer-Verlag. ISBN 978-1-59059-585-5.

182

http://infosecuritymag.techtarget.com/articles/july00/columns2_ec_doesit.shtml
http://groups-beta.google.com/group/sci.crypt/msg/9305502fd7d4ee6f
http://www.acm.org/classics/sep95
http://www.csl.sri.com/users/dave_sc/papers/thesis.ps.gz
http://www.dmst.aueb.gr/dds/pubs/jrnl/2003-CACM-Reflections2/html/reflections2.pdf
http://news.zdnet.com/2100-9595_22-527115.html

[Wheeler2003s] Wheeler, David A. 2003. Secure Programming for Linux and Unix HOWTO.
http://www.dwheeler.com/secure-programs/

[Wheeler2003t] Wheeler, David A. October 2003. Techniques for Cyber Attack Attribution.
Institute for Defense Analyses (IDA). IDA Paper P-3792. Log: H 03-001218.
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA468859&Location=U2&doc=GetTRDoc.pdf

[Wheeler2005] Wheeler, David A. December 2005. “Countering Trusting Trust through Diverse
Double-Compiling (DDC)”. Proceedings of the Twenty-First Annual Computer Security
Applications Conference (ACSAC). Tucson, Arizona, pp. 28-40, Los Alamitos: IEEE Computer
Society. ISBN 0-7695-2461-3, ISSN 1063-9527, IEEE Computer Society Order Number P2461.
http://www.dwheeler.com/trusting-trust

[Wheeler2007] Wheeler, David A. April 12, 2007. Why OSS/FS? Look at the Numbers!
http://www.dwheeler.com/oss_fs_why.html

[Wheeler2008] Wheeler, David A. May 14, 2008. Is OpenDocument an Open Standard? Yes!
http://www.dwheeler.com/essays/opendocument-open.html

[Wheeler2009f] Wheeler, David A. February 3, 2009. Free-Libre/Open Source Software (FLOSS)
is Commercial Software. http://www.dwheeler.com/essays/commercial-floss.html

[Wheeler2009i] Wheeler, David A. May 26, 2009. The Most Important Software Innovations.
http://www.dwheeler.com/innovation/innovation.html

[Wheeler2009s] Wheeler, David A. Revised July 29, 2009. Sweet-expressions: Version 0.2.
http://www.dwheeler.com/readable/version02.html

[Williams2009] Williams, Jeff (Aspect Security). July 29, 2009. “Enterprise Java Rootkits:
‘Hardly anyone watches the developers’”. BlackHat USA.
http://www.blackhat.com/presentations/bh-usa-09/WILLIAMS/BHUSA09-Williams-
EnterpriseJavaRootkits-PAPER.pdf

[Wirth1996] Wirth, Niklaus. 1996. Compiler Construction. Addison-Wesley. ISBN 0-201-40353-
6.

[Wysopal] Wysopal, Chris. 2007. “Static Detection of Application Backdoors”. Black Hat.
https://www.blackhat.com/presentations/bh-usa-07/Wysopal_and_Eng/Whitepaper/bh-usa-07-
wysopal_and_eng-WP.pdf

[Zitser2004] Zitser, Misha, Richard Lippmann, and Tim Leek. 2004. “Testing Static Analysis
Tools using Exploitable Buffer Overflows from Open Source Code”. Proc. FSE-12, ACM
SIGSOFT. http://www.ll.mit.edu/IST/pubs/04_TestingStatic_Zitser.pdf

183

http://www.ll.mit.edu/IST/pubs/04_TestingStatic_Zitser.pdf
https://www.blackhat.com/presentations/bh-usa-07/Wysopal_and_Eng/Whitepaper/bh-usa-07-wysopal_and_eng-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Wysopal_and_Eng/Whitepaper/bh-usa-07-wysopal_and_eng-WP.pdf
http://www.blackhat.com/presentations/bh-usa-09/WILLIAMS/BHUSA09-Williams-EnterpriseJavaRootkits-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/WILLIAMS/BHUSA09-Williams-EnterpriseJavaRootkits-PAPER.pdf
http://www.dwheeler.com/readable/version02.html
http://www.dwheeler.com/innovation/innovation.html
http://www.dwheeler.com/essays/commercial-floss.html
http://www.dwheeler.com/essays/opendocument-open.html
http://www.dwheeler.com/oss_fs_why.html
http://www.dwheeler.com/trusting-trust
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA468859&Location=U2&doc=GetTRDoc.pdf
http://www.dwheeler.com/secure-programs/

Curriculum Vitae

David A. Wheeler was born May 1965 in the United States of
America and is an American citizen. He completed his B.S. in
Electronics Engineering (with distinction) at George Mason
University (GMU) in 1987 (awarded January 1988). He
received his M.S. in Computer Science and a certificate for
Software Engineering at GMU in 1994, when he also received a
Computer Science graduate honor roll award. In 2000 he
received a certificate in Information Systems Security from
GMU. In 2009 he completed his requirements for a PhD in
Information Technology from GMU.

From 1982 on he worked as a computer consultant, solving a
variety of problems. He also spent time as the maintainer of the
U.S.’ first commercial multi-user role-playing game. In 1988
he joined the Institute for Defense Analyses (IDA), where he
continues to solve challenging problems. His numerous awards
include the Ada Programming Contest Award, membership in
the Eta Kappa Nu Honor Society, and the George Washington
University Engineering Award; he is also an Eagle Scout. His
books include Software Inspection: An Industry Best Practice

(IEEE Computer Society Press), Ada 95: The Lovelace Tutorial (Springer-Verlag), and Secure
Programming for Linux and Unix HOWTO (self-published). His numerous articles include his
developerWorks column “Secure Programmer”, the article Why Open Source Software / Free
Software? Look at the Numbers!, and “Countering Trusting Trust through Diverse Double-
Compiling (DDC)” in Proceedings of the Twenty-First Annual Computer Security Applications
Conference (ACSAC 2005). He has long worked on tasks related to large or high-risk systems,
and in particular specializes in developing secure software, Free-libre/open source software
(FLOSS), and open standards.

For more information, including contact information, see David A. Wheeler’s personal website at
<http://www.dwheeler.com>.

184

http://www.dwheeler.com/
http://www.dwheeler.com/

	List of Tables
	List of Figures
	List of Abbreviations and Symbols
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Initial revelation: Karger, Schell, and Thompson
	2.2 Other work on corrupted compilers
	2.3 Compiler bootstrap test
	2.4 Analyzing software
	2.4.1 Static analysis
	2.4.2 Dynamic analysis

	2.5 Diversity for security
	2.6 Subversion of software is a real problem
	2.7 Previous DDC paper

	3 Description of threat
	3.1 Attacker motivation
	3.2 Triggers, payloads, and non-discovery

	4 Informal description of Diverse Double-Compiling (DDC)
	4.1 Terminology and notation
	4.2 Informal description of DDC
	4.3 Informal assumptions
	4.4 DDC does not require that different compilers produce identical executables
	4.5 Special case: Self-parenting compiler
	4.6 Why not always use the trusted compiler?
	4.7 Why is DDC different from N-version programming?
	4.8 DDC works with randomly-corrupting compilers

	5 Formal proof
	5.1 Graphical model for formal proof
	5.1.1 Types
	5.1.2 DDC components
	5.1.3 Claimed origin

	5.2 Formal notation: First-Order Logic (FOL)
	5.3 Proof step rationales (derivation rules or rules of inference)
	5.4 Tools and rationale for confidence in the proofs
	5.4.1 Early DDC proof efforts
	5.4.2 Prover9, mace4, and ivy
	5.4.3 Tool limitations
	5.4.4 Proofs’ conclusions follow from their assumptions
	5.4.5 Proofs’ assumptions and goals adequately model the world

	5.5 Proof conventions
	5.6 Proof #1: Goal source_corresponds_to_executable
	5.6.1 Predicate “=” given two executables
	5.6.2 Predicate exactly_correspond
	5.6.3 Predicate accurately_translates
	5.6.4 Assumption cT_compiles_sP
	5.6.4.1 Implications for the language
	5.6.4.2 Implications for the trusted compiler and its environment

	5.6.5 Function compile
	5.6.6 Assumption sP_compiles_sA
	5.6.7 Definition definition_stage1
	5.6.8 Definition define_exactly_correspond
	5.6.9 Definition definition_stage2
	5.6.10 Goal source_corresponds_to_executable
	5.6.11 Prover9 proof of source_corresponds_to_executable
	5.6.12 Discussion of proof #1

	5.7 Proof #2: Goal always_equal
	5.7.1 Reused definitions define_exactly_correspond, definition_stage1, and definition_stage2
	5.7.2 Assumption cT_compiles_sP
	5.7.3 Predicate deterministic_and_portable
	5.7.4 Function run
	5.7.5 Function converttext
	5.7.6 Function extract
	5.7.7 Function retarget
	5.7.8 Assumption sP_portable_and_deterministic
	5.7.9 Definition define_portable_and_deterministic
	5.7.10 Assumption cP_corresponds_to_sP
	5.7.11 Definition define_compile
	5.7.12 Definition definition_cA
	5.7.13 Goal always_equal
	5.7.14 Prover9 proof of always_equal
	5.7.15 Discussion of proof #2

	5.8 Proof #3: Goal cP_corresponds_to_sP
	5.8.1 Definition definition_cP
	5.8.2 Assumption cGP_compiles_sP
	5.8.3 Goal cP_corresponds_to_sP
	5.8.4 Prover9 proof of cP_corresponds_to_sP
	5.8.5 Discussion of proof #3

	6 Methods to increase diversity
	6.1 Diversity in compiler implementation
	6.2 Diversity in time
	6.3 Diversity in environment
	6.4 Diversity in source code input

	7 Demonstrations of DDC
	7.1 tcc
	7.1.1 Test configuration
	7.1.2 Diverse double-compiling tcc
	7.1.3 Defect in sign-extending cast 8-bit values
	7.1.4 Long double constant problem
	7.1.5 Final results with tcc demonstration

	7.2 Goerigk Lisp compilers
	7.3 GCC
	7.3.1 Setup for GCC
	7.3.2 Challenges
	7.3.2.1 Master result directory
	7.3.2.2 Obsolete format for tail
	7.3.2.3 Libiberty library

	7.3.3 GCC Results

	8 Practical challenges
	8.1 Limitations
	8.2 Non-determinism
	8.3 Difficulty in finding alternative compilers
	8.4 Countering “pop-up” attacks
	8.5 Multiple sub-components
	8.6 Timestamps and inexact comparison
	8.7 Interpreters and recompilation dependency loops
	8.8 Untrusted environments and broadening DDC application
	8.9 Trusted build agents
	8.10 Application problems with current distributions
	8.11 Finding errors and maliciously misleading code
	8.12 Hardware
	8.13 Complex libraries and frameworks
	8.14 How can an attacker counter DDC?

	9 Conclusions and ramifications
	Appendix A: Lisp results
	A.1 Source code for correct compiler
	A.2 Compiled code for correct compiler
	A.3 Compilation of factorial function
	A.4 Compilation of login function
	A.5 DDC application

	Appendix B: Detailed GCC results
	Appendix C: Model results
	9.1 Proof #1 model
	9.2 Proof #2 model
	9.3 Proof #3 model

	Appendix D: Guidelines for Compiler Suppliers
	Appendix E: Key definitions
	Bibliography

