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Abstract

FULLY COUNTERING TRUSTING TRUST THROUGH DIVERSE DOUBLE-COMPILING

David A. Wheeler, PhD

George Mason University, 2009

Dissertation Directors: Dr. Daniel A. Menascé and Dr. Ravi Sandhu

An Air Force evaluation of Multics, and Ken Thompson’s Turing award lecture (“Reflections on 

Trusting Trust”), showed that compilers can be subverted to insert malicious Trojan horses into 

critical  software,  including  themselves.   If  this  “trusting  trust”  attack  goes  undetected,  even 

complete analysis of a system’s source code will not find the malicious code that is running. 

Previously-known  countermeasures  have  been  grossly  inadequate.   If  this  attack  cannot  be 

countered, attackers can quietly subvert entire classes of computer systems,  gaining complete 

control  over  financial,  infrastructure,  military,  and/or  business  systems  worldwide.   This 

dissertation’s thesis is that the trusting trust attack can be detected and effectively countered using 

the “Diverse Double-Compiling” (DDC) technique, as demonstrated by (1) a formal proof that 

DDC  can  determine  if  source  code  and  generated  executable  code  correspond,  (2)  a 

demonstration of DDC with four compilers (a small C compiler, a small Lisp compiler, a small 

maliciously corrupted Lisp compiler, and a large industrial-strength C compiler, GCC), and (3) a 

description  of  approaches  for  applying  DDC  in  various  real-world  scenarios.   In  the  DDC 

technique, source code is compiled twice: the source code of the compiler’s parent is compiled 



using a trusted compiler, and then the putative compiler source code is compiled using the result of 

the first compilation.  If the DDC result is bit-for-bit identical with the original compiler-under-test’s 

executable, and certain other assumptions hold, then the compiler-under-test’s executable corresponds 

with its putative source code.



1 Introduction

Many software security evaluations examine source code, under the assumption that a program’s 

source code accurately represents the executable actually run by the computer1.  Naïve developers 

presume  that  this  can  be assured  simply by recompiling the  source  code to  see  if  the  same 

executable is produced.  Unfortunately, the “trusting trust” attack can falsify this presumption.

For purposes of this dissertation, an executable that does not correspond to its putative source 

code  is  corrupted2.   If  a  corrupted  executable  was  intentionally  created,  we  can  call  it  a 

maliciously corrupted executable.  The trusting trust attack occurs when an attacker attempts to 

disseminate  a  compiler  executable  that  produces  corrupted executables,  at  least  one of  those 

produced corrupted executables is a corrupted compiler, and the attacker attempts to make this 

situation  self-perpetuating.   The  attacker  may use  this  attack  to  insert  other  Trojan  horse(s) 

(software that  appears to the user to perform a desirable function but facilitates unauthorized 

access into the user’s computer system).

1An executable is data that can be directly executed by a computing environment.  An executable may 
be code for an actual machine or for a simulated machine (e.g., a “byte code”).  A common alternative term 
for executable is “binary” (e.g., [Sabin2004]), but this term is misleading; in modern computers, all data is 
represented using binary codes.  For purposes of this dissertation, “object code” is a synonym for 
“executable”.  Source code is a representation of a program that can be translated into an executable, and is 
typically human-readable.  A compiler is an executable that when executed translates source code into an 
executable (it may also perform other actions).  An assembler is a compiler for a language whose 
instructions are primarily a close approximation of the executing environment’s instructions.  The process 
of using a compiler to translate source code into an executable is termed compiling.

2An executable e corresponds to source code s if and only if execution of e always behaves as specified 
by s when the execution environment of e behaves correctly.

1



Information about the trusting trust attack was first published in [Karger1974]; it became widely 

known through [Thompson1984].  Unfortunately, there has been no practical way to fully detect 

or  counter  the  trusting trust  attack,  because repeated in-depth review of industrial  compilers’ 

executable code is impractical.

For source code evaluations to be strongly credible, there must be a way to justify that the source 

code being examined accurately represents what is being executed—yet the trusting trust attack 

subverts that very claim.  Internet Security System’s David Maynor argues that the risk of attacks 

on compilation processes is increasing [Maynor2004]  [Maynor2005].  Karger and Schell noted 

that the trusting trust attack was still a problem in 2000 [Karger2000], and some technologists 

doubt that computer-based systems can ever be secure because of the existence of this attack 

[Gauis2000].   Anderson  et  al.  argue  that  the  general  risk  of  subversion  is  increasing 

[Anderson2004].

Recently, in several mailing lists and blogs, a technique to detect such attacks has been briefly 

described, which uses a second (diverse) “trusted” compiler (as will be defined in section 4.3) and 

two  compilation  stages.   This  dissertation  terms  the  technique  “diverse  double-compiling” 

(DDC).  In the DDC technique, the source code of the compiler’s parent is compiled using a 

trusted compiler, and then the putative compiler source code is compiled using the result of the 

first compilation (chapter 4 further explains this).  If the DDC result is bit-for-bit identical with 

the  original  compiler-under-test’s  executable,  and  certain  other  assumptions  hold,  then  the 

compiler-under-test’s executable corresponds with its putative source code (chapter 5 justifies this 

claim).  Before this work began, there had been no examination of DDC in detail which identified 

its assumptions, proved its correctness or effectiveness, or discussed practical issues in applying 

it.  There had also not been any public demonstration of DDC.

2



This dissertation’s thesis is that the trusting trust attack can be detected and effectively countered 

using the “Diverse Double-Compiling” (DDC) technique, as demonstrated by (1) a formal proof 

that  DDC  can  determine  if  source  code  and  generated  executable  code  correspond,  (2)  a 

demonstration of DDC with four compilers (a small C compiler, a small Lisp compiler, a small 

maliciously corrupted Lisp compiler, and a large industrial-strength C compiler, GCC), and (3) a 

description of approaches for applying DDC in various real-world scenarios.

This dissertation provides background and a description of the threat, followed by an informal 

description of DDC.  This is followed by a formal proof of DDC, information on how diversity (a 

key requirement of DDC) can be increased, demonstrations of DDC, and information on how to 

overcome practical challenges in applying DDC.  The dissertation closes with conclusions and 

ramifications.   Appendices  have  some  additional  detail.   Further  details,  including  materials 

sufficient to reproduce the experiments, are available at:

http://www.dwheeler.com/trusting-trust/

This dissertation follows the guidelines of [Bailey1996] to enhance readability.  In addition, this 

dissertation uses logical (British) quoting conventions; quotes do not enclose punctuation unless 

they are part of the quote [Ritter2002].  Including extraneous characters in a quotation can be 

grossly misleading, especially in computer-related material [Raymond2003, chapter 5].

3
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2 Background and related work

This chapter provides background and related work.  It begins with a discussion of the initial 

revelation  of  the  trusting  trust  attack  by  Karger,  Schell,  and  Thompson,  including  a  brief 

description of “obvious” yet inadequate solutions.  The next sections discuss work on corrupted 

or subverted compilers,  the compiler  bootstrap test,  general  work on analyzing software,  and 

general approaches for using diversity to improve security.  This is followed by evidence that 

software subversion is a real problem, not just a theoretical concern.  This chapter concludes by 

discussing the DDC paper published by the Annual Computer Security Applications Conference 

(ACSAC) [Wheeler2005] and the improvements to DDC that have been made since that time.

2.1 Initial revelation: Karger, Schell, and Thompson

Karger and Schell provided the first public description of the problem that compiler executables 

can  insert  malicious  code  into  themselves.   They  noted  in  their  examination  of  Multics 

vulnerabilities that a “penetrator could insert a trap door into the... compiler... [and] since the PL/I 

compiler is itself written in PL/I, the trap door can maintain itself, even when the compiler is 

recompiled.   Compiler  trap doors are significantly more complex than the other trap doors... 

However, they are quite practical to implement” [Karger1974].

Ken  Thompson  widely  publicized  this  problem  in  his  1984  Turing  Award  presentation 

(“Reflections on Trusting Trust”), clearly explaining it and demonstrating that this was both a 

practical and dangerous attack.  He described how to modify the Unix C compiler to inject a 

4



Trojan horse, in this case to modify the operating system login program to surreptitiously give 

him root access.  He also added code so that the compiler would inject a Trojan Horse when 

compiling itself, so the compiler became a “self-reproducing program that inserts both Trojan 

horses into the compiler”.  Once this is done, the attacks could be removed from the source code. 

At that point no source code examination—even of the compiler—would reveal the existence of 

the Trojan horses, yet the attacks could persist through recompilations and cross-compilations of 

the compiler.  He then stated that “No amount of source-level verification or scrutiny will protect 

you from using untrusted code... I could have picked on any program-handling program such as 

an assembler, a loader, or even hardware microcode.  As the level of program gets lower, these 

defects will be harder and harder to detect” [Thompson1984].  Thompson’s demonstration also 

subverted the disassembler,  hiding the attack from disassembly.   Thompson implemented this 

attack in the C compiler and (as a demonstration) successfully subverted another Bell Labs group, 

the attack was never detected.

Thompson  later  gave  more  details  about  his  demonstration,  including  assurances  that   the 

maliciously corrupted compiler was never released outside Bell Labs [Thornburg2000].

Obviously,  this  attack  invalidates  security  evaluations  based  on  source  code  review,  and 

recompilation of source code using a potentially-corrupted compiler does not eliminate the risk. 

Some simple approaches appear to solve the problem at first glance, yet fail to do so or have 

significant weaknesses:

• Compiler  executables  could  be  manually  compared  with  their  source  code.   This  is 

impractical given compilers’ large sizes, complexity, and rate of change.

5



• Such comparison could be automated, but optimizing compilers make such comparisons 

extremely difficult, compiler changes make keeping such tools up-to-date difficult, and 

the tool’s complexity would be similar to a compiler’s.

• A second compiler could compile the source code, and then the executables could be 

compared  automatically  to  argue  semantic  equivalence.   There  is  some  work  in 

determining the semantic equivalence of two different executables [Sabin2004], but this 

is very difficult to do in practice.

• Receivers could require that they only receive source code and then recompile everything 

themselves.  This fails if the receiver’s compiler is already maliciously corrupted; thus, it 

simply  moves  the  attack  location.   An  attacker  could  also  insert  the  attack  into  the 

compiler’s source; if the receiver accepts it (due to lack of diligence or conspiracy), the 

attacker could remove the evidence in a later version of the compiler (as further discussed 

in section 8.4).

• Programs can be written in interpreted languages.  But eventually an interpreter must be 

implemented by machine code, so this simply moves the attack location.

2.2 Other work on corrupted compilers

Some  previous  papers  outline  approaches  for  countering  corrupted  compilers,  though  their 

approaches  have  significant  weaknesses.   Draper  [Draper1984]  recommends  screening  out 

maliciously corrupted compilers by writing a “paraphrase” compiler (possibly with a few dummy 

statements) or a different compiler executable, compiling once to remove the Trojan horse, and 

then compiling a second time to produce a Trojan horse-free compiler.  This idea is expanded 

upon  by  McDermott  [McDermott1988],  who  notes  that  the  alternative  compiler  could  be  a 

reduced-function compiler or one with large amounts of code unrelated to compilation.  Lee’s 
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“approach #2” describes most of the basic process of diverse double-compiling, but implies that 

the results might not be bit-for-bit  identical [Lee2000].   Luzar makes a similar point  as Lee, 

describing how to rebuild a system from scratch using a different trusted compiler but not noting 

that  the  final  result  should  be  bit-for-bit  identical  if  other  factors  are  carefully  controlled 

[Luzar2003].

None of these papers note that it is possible to produce a result that is bit-for-bit identical to the 

original compiler executable.  This is a significant advantage of diverse double-compiling (DDC), 

because  determining  if  two  different  executables  are  “functionally  equivalent”  is  extremely 

difficult3, while determining if two executables are bit-for-bit identical is extremely easy.  These 

previous approaches require each defender to recompile their compiler themselves before using 

it;  in contrast,  DDC can be used as an after-the-fact vetting process by multiple third parties, 

without requiring a significant change in compiler delivery or installation processes, and without 

requiring  that  all  compiler  users  receive  the  compiler  source  code.   All  of  these  previous 

approaches simply move the potential vulnerability somewhere else (e.g., to the process using the 

“paraphrase” compiler).  In contrast, an attacker who wishes to avoid detection by DDC must 

corrupt  both the  original  compiler  and  every application of DDC to that  executable,  so each 

application of DDC can further build confidence that a specific executable corresponds with its 

putative source code.  Also, none of these papers demonstrate their technique.

Magdsick discusses using different versions of a compiler, and different compiler platforms such 

as  central  processing  unit  (CPU)  and  operating  system,  to  check  executables.   However, 

Magdsick presumes that the compiler itself will be the same base compiler (though possibly a 

different  version).   He  does  note  the  value  of  recompiling  “everything”  to  check  it 

[Magdsick2003].   Anderson notes that  cross-compilation does not  help if  the attack is  in the 
3Determining if two executables are equivalent is undecidable in general; see section 5.6.1.
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compiler [Anderson2003].  Mohring argues for the use of recompilation by GCC to check other 

components, presuming that the GCC executables themselves in some environments would be 

pristine [Mohring2004].  He makes no notice that all GCC executables used might be maliciously 

corrupted, or of the importance of diversity in compiler implementation.  In his approach different 

compiler versions may be used, so outputs would be “similar” but not identical; this leaves the 

difficult problem of comparing executables for “exact equivalence” unresolved.

A great deal of effort has been spent to develop proofs of correctness for compilers, either of the 

compiler  itself  and/or its generated results  [Dave2003] [Stringer-Calvert1998] [Bellovin1982]. 

This  is  quite  difficult  even  for  simple  languages,  though  there  has  been  progress. 

[Leinenbach2005]  discusses  progress  in  verifying  a  subset  C  compiler  using  Isabelle/Higher 

Order Logic (HOL).   “Compcert” is a  compiler that  generates PowerPC assembly code from 

Clight (a large subset of the C programming language); this compiler is primarily written using 

the  specification  language of  the  Coq proof  assistant,  and its  correctness  (that  the  generated 

assembly code is semantically equivalent to its source program) has been entirely proved within 

the Coq proof  assistant  [Leroy2006]  [Blazy2006]  [Leroy2008]   [Leroy2009].   [Goerigk1997] 

requires  formal  specifications  and  correspondence  proofs,  along  with  double-checking  of 

resulting  transformations  with  the  formal  specifications.   It  does  briefly  note  that  “if  an 

independent  (whatever  that  is)  implementation  of  the  specification  will  generate  an  equal 

bootstrapping  result,  this  fact  might  perhaps  increase  confidence.   Note  however,  that,  in 

particular in the area of security... We want to guarantee the correctness of the generated code, 

e.g.,  preventing  criminal  attacks”  [Goerigk1997,  17].   However,  it  does  not  explain  what 

independence  would  mean,  nor  what  kind  of  confidence  this  equality  would  provide. 

[Goerigk1999]  specifically focuses  on countering Trojan horses  in  compilers,  through formal 

verification  techniques,  but  again  this  requires  having  formal  specifications  and  performing 
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formal  correspondence proofs.   Goerigk  recommends  “a  posteriori  code  inspection based  on 

syntactic code comparison” to counter the trusting trust attack, but such inspection is very labor-

intensive on industrial-scale compilers that implement significant optimizations.  DDC can be 

dramatically strengthened by having formal specifications and proofs of compilers (which can 

then be used as the trusted compiler), but DDC does not require them.  Indeed, DDC and formal 

proofs of compilers can be used in a complementary way: A formally-proved compiler may omit 

many useful optimizations (as they can be difficult or time-consuming to prove), but it can still be 

used as the DDC “trusted compiler” to gain confidence in another (production-ready) compiler.

Spinellis argues that “Thompson showed us that one cannot trust an application’s security policy 

by examining its  source code...  The recent  Xbox attack demonstrated that  one cannot  trust  a 

platform’s security policy if the applications running on it cannot be trusted” [Spinellis2003].  It 

is worth noting that the literature for change detection (such as [Kim1994] and [Forrest1994]) and 

intrusion detection do not easily address this problem, because a compiler is expected to accept 

source code and generate object code.

Faigon’s  “Constrained  Random Testing”  process  detects  compiler  defects  by  creating  many 

random test programs, compiling them with a compiler-under-test and a reference compiler, and 

detecting if running them produces different results [Faigon].  Faigon’s approach may be useful 

for  finding  some  compiler  errors,  but  it  is  extremely unlikely to  find  maliciously corrupted 

compilers.

2.3 Compiler bootstrap test

A common test for errors used by many compilers (including GCC) is the so-called “compiler 

bootstrap  test”.   Goerigk  formally  describes  this  test,  crediting  Niklaus  Wirth’s  1986  book 
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Compilerbau as proposing this test for detecting errors in compilers [Goerigk1999].  In this test, 

if c(s,b) is the result of compiling source s using compiler executable b, and  m is some other 

compiler (the “bootstrap” compiler), then4:

If m0 and s are both correct and deterministic, m is correct, m0=c(s,m),  
m1=c(s,m0), m2=c(s,m1), all compilations terminate, and if the underlying 
hardware works correctly, then m1=m2.

The compiler bootstrap test goes through steps to determine if m1=m2; if not, there is a compiler 

error of some kind.  This test finds many unintentional errors, which is why it is popular.  But 

[Goerigk1999] points out that this test is insufficient to make strong claims, in particular, m1 may 

equal m2 even if m, m0, or s are not correct.  For example, it is trivial to create compiler source 

code that passes this test, yet is incorrect, since this test only tests features used in the compiler 

itself.   More  importantly (for  purposes  of  this  dissertation),  if  m is  a  maliciously corrupted 

compiler, a compilation process can pass this test yet produce a maliciously corrupted compiler 

m2.  Note that the compiler bootstrap test does not consider the possibility of using two different 

bootstrap compilers (m and m′) and later comparing their different compiler results (m2 and m2′) 

to see if they produce the same (bit-for-bit) result.  Therefore, the DDC technique is not the same 

as the compiler bootstrap test.  However, DDC does have many of the same preconditions as the 

compiler bootstrap test.  Since the compiler bootstrap test is popular, many DDC preconditions 

are already met by typical industrial compilers, making DDC easier to apply to typical industrial 

compilers.

2.4 Analyzing software

All programs can be analyzed to find intentionally-inserted or unintentional security issues (aka 

vulnerabilities).  These techniques can be broadly divided into static analysis (which examines a 

4This is theorem 2 (the bootstrap test theorem) of [Goerigk1999].  For clarity, the text has been 
modified so that its notation is the same as the notation used in this dissertation.

10



static representation of the program, such as source code or executable, without executing it) and 

dynamic  analysis  (which  examines  what  the  program  does  while  it  is  executing).   Formal 

methods, which are techniques that use mathematics to prove programs or program models are 

correct, can be considered a specific kind of static analysis technique.

Since compilers are programs, these general analysis techniques (both static and dynamic) that 

are not specific to compilers can be used on compilers as well.

2.4.1 Static analysis

Static analysis  techniques examine programs (their  source code,  executable,  or  both) without 

executing them.  Both programs and humans can perform static analysis.

There are many static analysis programs (aka tools) available; many are focused on identifying 

security vulnerabilities in software.  The National Institute of Science and Technology (NIST) 

Software Assurance Metrics And Tool Evaluation (SAMATE) project (http://samate.nist.gov) is 

“developing methods to enable software tool evaluations, measuring the effectiveness of tools 

and techniques, and identifying gaps in tools and methods”.  SAMATE has collected a long list of 

static  analysis  programs  for  finding  security  vulnerabilities  by  examining  source  code  or 

executable code.  There are also a number of published reports comparing various static analysis 

tools,  such  as  [Zitser2004],  [Forristal2005],  [Kratkiewicz2005],  and [Michaud2006].   A draft 

functional specification for source code analysis tools has been developed [Kass2006], proposing 

a set of defects that such tools would be required to find and the code complexity that they must 

be able to handle while detecting them.

Although [Kass2006] briefly notes that source code analysis tools might happen to find malicious 

trap  doors,  many  documents  on  static  analysis  focus  on  finding  unintentional errors,  not 
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maliciously-implanted vulnerabilities.   [Kass2006]  specifies a specific set  of  security-relevant 

errors that have been made many times in real programs, and limits the required depth of the 

analysis  (to  make  analysis  time  and  reporting  manageable).   [Chou2006]  also  notes  that  in 

practice, static analyzers give up on error classes that are too hard to diagnose.  For unintentional 

vulnerabilities, this is sensible; unintentional errors that have commonly occurred in the past are 

likely to recur (so searching for them can be very helpful).  Unfortunately, these approaches are 

less helpful against an adversary who is  intentionally  inserting malicious code into a program. 

An adversary could intentionally insert one of these common errors, perhaps because they have 

high deniability, but ensure that it is so complex that a tool is unlikely to find it.  Alternatively, an 

adversary could insert code that is an attack but not in the list of patterns the tools search for. 

Indeed, an adversary can repeatedly use static analysis tools until he or she has verified that the 

malicious code will not be detected later by those tools.

Static analysis tools also exist for analyzing executable files, instead of source code files.  Indeed, 

[Balakrishnan2005] argues that program analysis should begin with executables instead of source 

code, because only the executables are actually run and source code analysis can be misled.  To 

address this, there are efforts to compute better higher-level constructs from executable code, but 

in the general case this is still a difficult research area [Linger2006].

[Wysopal] presents a number of heuristics that can be used to statically detect some application 

backdoors  in  executable  files.   This  includes  identifying  static  variables  that  “look  like” 

usernames,  passwords,  or  cryptographic  keys,  searching  for  network  application  programmer 

interface (API) calls in applications where they are unexpected, searching for standard date/time 

API calls (which may lead to a time bomb), and so on.  Unfortunately, many malicious programs 
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will  not  be detected by such heuristics,  and as noted above,  attackers can develop malicious 

software in ways that specifically avoid detection by the heuristics of such tools.

Many static analysis tools for executables use the same approach as many static analysis tools for 

source code: they search for specific programs or program fragments known to be problematic. 

The most obvious case are virus-checkers; though it is possible to examine behavior, and some 

anti-virus programs are increasingly doing so, historically “anti-virus” programs have a set of 

patterns of known viruses, which is constantly updated and used to search various executables 

(e.g.,  in a file  or  boot  record)  to see  if  these patterns  are  present  [Singh2002]  [Lapell2006]. 

However, as noted in Fred Cohen’s initial work on computer viruses [Cohen1985], viruses can 

mutate as they propagate, and it is not possible to create a pattern listing all-and-only malicious 

programs.  [Christodorescu2003] attempts to partially counter this; this paper regards malicious 

code  detection  as  an  obfuscation-deobfuscation  game  between  malicious  code  writers  and 

researchers, and presents an architecture for detecting known malicious patterns in executables 

that are hidden by common obfuscation techniques.  Even this more robust architecture does not 

work against different malicious patterns, nor against different obfuscation techniques.

Of course, even if tools cannot find malicious code, detailed human review can be used at the 

source or executable level if the software is critical enough to warrant it.  For example, the Open 

Berkeley  Software  Distribution  (OpenBSD)  operating  system  source  code  is  regularly  and 

purposefully examined by a team of  people  with the  explicit  intention of  finding and fixing 

security holes,  and  as  a  result  has  an  excellent  security  record  [Payne2002].   The  Strategic 

Defense Initiative Organization (SDIO), now named the Missile Defense Agency (MDA), even 

developed a set of process requirements to counter malicious and unintentional vulnerabilities, 
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emphasizing multi-person knowledge and review along with configuration management and other 

safeguards [SDIO1993].

Unfortunately, the trusting trust attack can render human reviews moot if there is no technique to 

counter the attack.  The trusting trust attack immediately renders examination of the source code 

inadequate, because the executable code need not correspond to the source code.  Thompson’s 

attack subverted the symbolic debugger, so in that case, even human review of the executable 

could fail to detect the attack.  Thus, human reviews are less convincing unless the trusting trust 

attack is itself countered.

Human review also presumes that other humans examining source code or executables will be 

able to detect malicious code.  In large code bases, this can be a challenge simply due to their size 

and complexity.  In addition, it is possible for an adversary to create source code that appears to 

work correctly, yet actually performs a malevolent action instead.  This dissertation uses the term 

maliciously misleading code for any source code that is intentionally designed to look benign, yet 

creates a vulnerability (including an attack).  The topic of maliciously misleading code is further 

discussed in section 8.11.

2.4.2 Dynamic analysis

It is also possible to use dynamic techniques in an attempt to detect and/or counter vulnerabilities 

by examining the activities of a system, and then halting or examining the system when those 

activities are suspicious.  A trivial example is execution testing, where a small set of inputs are 

provided and the inputs are checked to see if they are correct.   However, dynamic analysis is 

completely inadequate for countering the trusting trust attack.
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Traditional execution testing is unlikely to counter the trusting trust attack.  Such attacks will only 

“trigger”  on  very  specific  inputs,  as  discussed  in  section  3.2,  so  even  if  the  executable  is 

examined in  detail,  it  is  extremely unlikely that  traditional  execution  testing will  detect  this 

problem.

Detecting at run-time arbitrary corrupted code in a compiler or the executable code it generates is 

very difficult.  The fundamental behavior of a corrupted compiler – that it accepts source code 

and generates an executable – is no different from a uncorrupted one.  Similarly, any malicious 

code a compiler inserts into other programs can often be made to behave normally in most cases. 

For example, a login program with a trap door (a hidden username and/or password) has the same 

general behavior: It decides if a user may log in and what privileges to apply.  Indeed, it may act 

completely correctly as long as the hidden username and/or password are not used.

In theory, continuous comparison of an executable’s behavior at run-time to its source code could 

detect differences between the executable and source code.  Unfortunately, this would need to be 

done all the time, draining performance.  Even worse, tools to do this comparison, given modern 

compilers producing highly optimized code, would be far more complex than a compiler, and 

would themselves be vulnerable to attack.

Given an extremely broad definition of “system”, the use of software configuration management 

tools  and  change  detection  tools  like  Tripwire  [Kim1994]  could  be  considered  dynamic 

techniques for countering malicious software.  Both enable detection of changes in the behavior 

of  a  larger  system.   Certainly a  configuration  management  system could  be  used  to  record 

changes  made  to  compiler  source,  and  then  used  to  enable  reviewers  to  examine  just  the 

differences.  But again, such review presupposes that any vulnerability in an executable could be 

revealed by analyzing its source code, a presupposition the trusting trust attack subverts.
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A broader problem is that once code is running, some programs must be trusted, and at least some 

of that code will almost certainly have been generated by a compiler.  Any program that attempts 

to  monitor  execution  might  itself  be  subverted,  just  as  Thompson  subverted  the  symbolic 

debugger, unless there is a technique to prevent it.  In any case, it would be better to detect and 

counter malicious code before it executed, instead of trying to detect malicious code’s execution 

while or after it occurs.

2.5 Diversity for security

There are a number of papers and articles about employing diversity to aid computer security, 

though they generally do not discuss or examine how to use diversity to counter Trojan horses 

inside compilers themselves or the compilation environment.

Geer et al. strongly argue that a monoculture (an absence of diversity) in computing platforms is a 

serious  security  problem  [Geer2003]  [Bridis2003],  but  do  not  discuss  employing  compiler 

diversity to counter this particular attack.

Forrest  et  al  argue that  run-time  diversity in  general  is  beneficial  for  computer  security.   In 

particular,  their  paper  discusses  techniques  to  vary  final  executables  by  “randomized” 

transformations affecting compilation, loading, and/or execution.  Their goal was to automatically 

change the executable (as seen at run-time) in some random ways sufficient to make it more 

difficult to attack.  The paper provides a set of examples, including adding/deleting nonfunctional 

code, reordering code, and varying memory layout.  They demonstrated the concept through a 

compiler that randomized the amount of memory allocated on a stack frame, and showed that the 

approach foiled a simple buffer overflow attack [Forrest1997].  Again, they do not attempt to 

counter corrupted compilers.
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John Knight and Nancy Leveson performed an experiment with “N-version programming” and 

showed that, in their experiment, “the assumption of independence of errors that is fundamental 

to some analyses of N-version programming does not hold” [Knight1986] [Knight1990].  As will 

be explained in section 4.7, this result does not invalidate DDC.

2.6 Subversion of software is a real problem

Subversion of software is not just a theoretical possibility; it is a current problem.  One book on 

computer crime lists various kinds of software subversion as attack methods (e.g., trap doors, 

Trojan  horses,  viruses,  worms,  salamis,  and  logic  bombs)  [Icove1995,  57-58].   CERT5 has 

published  a  set  of  case  studies  of  “persons  who  used  programming  techniques  to  commit 

malicious  acts  against  their  organizations”  [Cappelli2008].   Examples  of  specific  software 

subversion or subversion attempts include:

• Michael  Lauffenburger  inserted  a  logic  bomb  into  a  program  at  defense  contractor 

General Dynamics, his employer.  The bomb would have deleted vital rocket project data 

in 1991, including much that was unrecoverable, but another employee stumbled onto it 

before it was triggered [AP1991] [Hoffman1991].

• Timothy Lloyd planted a 6-line logic bomb into the systems of Omega Engineering, his 

employer, that went off on July 31, 1996.  This erased all of the company’s contracts and 

proprietary software  used by their  manufacturing tools,  resulting in  an estimated $12 

million  in  damages,  80  people  permanently  losing  their  jobs,  and  the  loss  of  their 

competitive edge in the electronics market space.  Plant manager Jim Ferguson stated 

flatly, “We will never recover”.  On February 26, 2002, a judge sentenced Lloyd to 41 

months in prison, three years of probation, and ordered him to pay more than $2 million 

in damages to Omega [Ulsh2000] [Gardian].
5CERT is not an acronym.
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• Roger Duronio worked at UBS PaineWebber’s offices in Weehawken, N.J., and was with 

the company for two years as a system administrator.  Apparently dissatisfied with his 

pay,  he installed a logic bomb to detonate on March 4,  2002,  and resigned from the 

company.  When the logic bomb went off, it caused over 1,000 of their 1,500 networked 

computers to begin deleting files.  This cost UBS PaineWebber more than $3 million to 

assess and repair the damage, plus an undetermined amount from lost business.  Duronio 

was sentenced to 97 months in federal prison (the maximum per the U.S. sentencing 

guidelines), and ordered to make $3.1 million in restitution [DoJ2006] [Gaudin2006b]. 

The attack was only a few lines of C code, which examined the time to see if it was the 

detonation  time,  and  then  (if  so)  executed  a  shell  command  to  erase  everything 

[Gaudin2006a].

• An unnamed developer  inside  Borland  inserted  a  back  door  into  the  Borland/Inprise 

Interbase Structured Query Language (SQL) database server around 1994.  This was a 

“superuser” account (“politically”) with a known password (“correct”), which could not 

be “changed using normal operational commands, nor [deleted] from existing vulnerable 

servers”.  Versions released to the public from 1994 through 2001 included this back 

door.  Originally Interbase was a proprietary program sold by Borland/Inprise.  However, 

it was released as open source software6 in July 2000, and less than six months later the 

open  source  software  developers  discovered  the  vulnerability  [Havrilla2001a] 

[Havrilla2001b].  The Firebird project, an alternate open source software package based 

on the same Interbase code, was also affected.  Jim Starkey, who launched InterBase but 

6Open source software is, briefly, software where users have the right to use the software for any 
purpose, review it, modify it, and redistribute it (modified or not) without requiring royalty payments 
[Wheeler2007].   The Open Source Definition [OSI2006] and the Free Software Definition [FSF2009] have 
more formal definitions for this term or the related term “Free software”.  There is quantitative data 
showing that, in many cases, using open source software/Free software (abbreviated as OSS/FS, FLOSS, or 
FOSS) is a reasonable or even superior approach to using their proprietary competition according to various 
measures [Wheeler2007].  In almost all cases, it is commercial software [Wheeler2009f].
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left  in  1991 before  the  back door  was added to  the  software  in  1994,  stated that  he 

believed that this back door was not malicious, but simply added to enable one part of the 

database software to communicate with another part  [Shankland2001].  However, this 

code had the hallmarks of many malicious back doors: It added a special account that was 

(1) undocumented, (2) cannot be changed, and (3) gave complete control to the requester.

• An unknown attacker attempted to insert a malicious back door in the Linux kernel in 

2003.  The two new lines were crafted to  appear legitimate, by using an “=” where a 

“==” would be expected.  The configuration management tools immediately identified a 

discrepancy, and examination of the changes by the Linux developers quickly determined 

that it was an attempted attack [Miller2003] [Andrews2003].

More recently, in 2009 the Win32.Induc virus was discovered in the wild.  This virus attacks 

Delphi compiler installations, modifying the compiler itself.  Once the compiler is infected, all 

programs compiled by that compiler will be infected [Mills2009] [Feng2009].  Thus, countering 

subverted  compilers  is  no  longer  an  academic  exercise;  attacks  on  compilers  have  already 

occurred.

Many have noted insertion of malicious code into software as an important risk:

• Many have  noted  subversion  of  software  as  an  issue  in  electronic  voting  machines 

[Saltman1988] [Kohno2004] [Feldman2006] [Barr2007].

• The U.S. Department of Defense (DoD) established a “software assurance initiative” in 

2003 to examine software assurance issues in defense software, including how to counter 

intentionally  inserted  malicious  code  [Komaroff2005].   In  2004,  the  U.S.  General 

Accounting Office (GAO) criticized the DoD, claiming that the DoD “policies do not 

fully address the risk of using foreign suppliers to develop weapon system software... 
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policies  [fail  to  focus]  on insider  threats,  such as  the  insertion of  malicious  code by 

software developers...” [GAO2004].  The U.S. Committee on National Security Systems 

(CNSS) defines Software Assurance (SwA) as “the level of confidence that software is 

free from vulnerabilities, either intentionally designed into the software or accidentally 

inserted at anytime during its lifecycle, and that the software functions in the intended 

manner”  [CNSS2006].   Note that  intentionally-created vulnerabilities inserting during 

software development are specifically included in this definition.

• The  President’s  Information  Technology  Advisory  Committee  (PITAC)  found  that 

“Vulnerabilities in software that are introduced by mistake or poor practices are a serious 

problem today.  In the future, the Nation may face an even more challenging problem as 

adversaries  –  both foreign and domestic  –  become increasingly sophisticated in  their 

ability  to  insert  malicious  code  into  critical  software”  [PITAC2005,  9].   The  U.S. 

National Strategy to Secure Cyberspace reported that a “spectrum of malicious actors can 

and  do  conduct  attacks  against  our  critical  information  infrastructures.   Of  primary 

concern is the threat of organized cyber attacks capable of causing debilitating disruption 

to  our  Nation’s  critical  infrastructures,  economy,  or  national  security....  [and  could 

subvert] our infrastructure with back doors and other means of access.” [PCIB2003,6]

• In 2003, China's State Council announced a plan requiring all government ministries to 

buy only locally produced software when upgrading, and to increase use of open source 

software, in part  due to concerns over “data spyholes installed by foreign powers” in 

software they procured for government use [CNETAsia2003].

In short, as software becomes more pervasive, subversion of it becomes ever more tempting to 

powerful individuals and institutions.  Attackers can even buy legitimate software companies, or 
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build them up, to widely disseminate quality products at a low price... but with “a ticking time 

bomb inside” [Schwartau1994, 304-305].

Not all articles about subversion specifically note the trusting trust attack as an issue, but as noted 

earlier, for source code evaluations to be strongly credible, there must be a way to justify that the 

source code being examined accurately represents what is being executed—yet the trusting trust 

attack subverts that very claim.  Internet Security System’s David Maynor argues that the risk of 

attacks on compilation processes is increasing [Maynor2004]  [Maynor2005]; Karger and Schell 

noted  that  the  trusting  trust  attack  was  still  a  problem  in  2000  [Karger2000],  and  some 

technologists doubt that computer-based systems can ever be secure because of the existence of 

this attack [Gauis2000].  Anderson et al. argue that the general risk of subversion is increasing 

[Anderson2004].   Williams  argues  that  the  risk  from malicious  developers  should  be  taken 

seriously, and describes a variety of techniques that malicious programmers can use to insert and 

hide attacks in an enterprise Java application [Williams2009].

2.7 Previous DDC paper

Initial results from DDC research were published by the Annual Computer Security Applications 

Conference  (ACSAC)  in  [Wheeler2005].   This  paper  was  well-received,  for  example,  Bruce 

Schneier wrote a glowing review and summary of the paper [Schneier2006], and the Spring 2006 

class  “Secure  Software  Engineering  Seminar”  of  Dr.  James  Walden  (Northern  Kentucky 

University) included it in its required reading list.

This dissertation includes the results of [Wheeler2005] and refines it further:

• The definition of DDC is generalized to cover the case where the compiler is not self-

regenerating.  Instead, a compiler-under-test may have been generated using a different 
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“parent” compiler.  Self-regeneration (where the putative source code of the parent and 

compiler-under-test are the same) is now a special case.

• A formal proof of DDC is provided, including a formalization of DDC assumptions.  The 

earlier paper includes only an informal justification.  The proof covers cases where the 

environments are different, including the effect of different text representation systems.

• A demonstration of DDC with a known maliciously corrupted compiler is shown.  As 

expected, DDC detects this case.

• A demonstration of DDC with an industrial-strength compiler (GCC) is shown.

• The discussion on the application of DDC is extended to cover additional challenges, 

including its potential application to hardware.
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3 Description of threat

Thompson  describes  how to  perform the  trusting  trust  attack,  but  there  are  some  important 

characteristics of the attack that are not immediately obvious from his presentation.  This chapter 

examines  the  threat  in  more  detail  and  introduces  terminology to  describe  the  threat.   This 

terminology will be used later to explain how the threat is countered.  For a more detailed model 

of this threat, see [Goerigk2000] and [Goerigk2002] which provide a formal model of the trusting 

trust attack.

The following sections describe what might motivate an attacker to actually perform such an 

attack, and the mechanisms an attacker uses that make this attack work (triggers, payloads, and 

non-discovery).

3.1 Attacker motivation

Understanding any potential threat involves determining the benefits to an attacker of an attack, 

and comparing them to the attacker’s risks, costs, and difficulties.  Although this trusting trust 

attack may seem exotic, its large benefits may outweigh its costs to some attackers.

The potential benefits are immense to a malicious attacker.  A successful attacker can completely 

control all systems that are compiled by that executable and that executable’s descendants, e.g., 

they can have a known login (e.g., a “backdoor password”) to gain unlimited privileges on entire 
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classes of systems.  Since detailed source code reviews will not find the attack, even defenders 

who have highly valuable resources and check all source code are vulnerable to this attack.

For a widely-used compiler, or one used to compile a widely-used program or operating system, 

this  attack  could  result  in  global  control.   Control  over  banking  systems,  financial  markets, 

militaries,  or  governments  could be gained with a single  attack.   An attacker could possibly 

acquire  enormous  funds  (by  manipulating  the  entire  financial  system),  acquire  or  change 

extremely sensitive information, or disable a nation’s critical infrastructure on command.

An attacker can perform the attack against multiple compilers as well.  Once control is gained 

over all systems that use one compiler, trust relationships and network interconnections could be 

exploited to ease attacks against other compiler executables.  This would be especially true of a 

patient and careful attacker; once a compiler is subverted, it is likely to stay subverted for a long 

time, giving an attacker time to use it to launch further attacks.

An attacker (either an individual or an organization) who subverted a few of the most widely used 

compilers  of  the  most  widely-used  operating  systems  could  effectively  control,  directly  or 

indirectly, almost every computer in existence.

The attack requires knowledge about compilers, effort to create the attack, and access (gained 

somehow) to the compiler executable, but all are achievable.  Compiler construction techniques 

are standard Computer Science course material.  The attack requires the insertion of relatively 

small amounts of code, so the attack can be developed by a single knowledgeable person.  Access 

rights to change the relevant compiler executables are usually harder to acquire, but there are 

clearly some who have such privileges already, and a determined attacker may be able to acquire 
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such privileges through a variety of means (including network attack, social engineering, physical 

attack, bribery, and betrayal).

The amount of power this attack offers is great, so it is easy to imagine a single person deciding 

to perform this attack for their own ends.  Individuals entrusted with compiler development might 

succumb to the temptation if they believed they could not be caught.  Today there are many virus 

writers, showing that many people are willing to write malicious code even without gaining the 

control this attack can provide.

It  is true that there are  other devastating attacks that an attacker could perform in the current 

environment.  Many users routinely download and install massive executables, including large 

patches  and  updates,  that  could  include  malicious  code,  and  few  users  routinely  examine 

executable machine code or byte code.  Few users examine source code even when they  can 

receive it, and in many cases users are not legally allowed to examine the source code.  As a 

result, here are some other potentially-devastating attacks that could be performed besides the 

trusting trust attack:

• An attacker can find unintentional vulnerabilities in existing executables, and then write 

code to exploit them.

• An attacker could modify or replace a widely-used/important executable during or after 

its compilation, but before its release by its supplier.  For example, an attacker might be 

able to do this by bribing or extorting a key person in the supplying organization, by 

becoming a key person, or by subverting the supplier’s infrastructure.

• Even when users only accept source code and compile the source code themselves, an 

attacker could insert an intentional attack in the source code of a widely-used/important 

program in the hope that no one will find it later.
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• An attacker with a long-range plan could develop a useful program specifically so that 

they can embed or eventually embed an attack (using the two attacks previously noted). 

In such cases the attacker might become a trusted (but not trustworthy) supplier.

However, there is a  fundamental difference with the attacks listed above and the trusting trust 

attack: there are known detection techniques for these attacks:

• Static and dynamic analysis can detect many unintentional vulnerabilities, because they 

tend to be caused by common implementation mistakes.  In addition, software designs 

can reduce the damage from such mistakes,  and some implementation languages  can 

completely eliminate certain kinds of mistakes.  Many documents discuss how to develop 

secure software for those trying to do so, including [Wheeler2003s] and [NDIA2008].

• If an attacker swaps the expected executable with a malicious executable, without using a 

trusting trust attack, the attack can be discovered by recompiling the source code to see if 

it produces the same results (presuming a deterministic compiler is used).  Even if it is 

not discovered, recompilation of the next version of the executable will often eliminate 

the attack if it is not a “trusting trust” attack.

• If an attacker inserts an intentional attack or vulnerability in the source code, this can be 

revealed by examining the source code (see section 8.11 for a discussion on attacks which 

are intentionally difficult to find in source code).

• If the user does not fully trust the supplier to perform such tests, then these tests could be 

performed by the user (if the user has the necessary information), or by a third party who 

is  trusted  by  the  user  and  supplier  (if  the  supplier  is  unwilling  to  give  necessary 

information to the user, but are willing to give it to such a third party).  If the supplier is 

unwilling to provide the necessary information to either the user or a third party, the user 
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could reasonably conclude that using such suppliers is a higher risk than using suppliers 

who are willing to provide this information, and then take steps based on that conclusion.

In contrast, there has been  no known effective detection technique for the trusting trust attack. 

Thus,  even  if  all  of  these  well-known detection  techniques  were  used,  users  would  still be 

vulnerable to the trusting trust attack.  What is more, the subversion can persist indefinitely; the 

longer it remains undetected, the more difficult it will be to reliably identify the perpetrator even 

if it is detected.

Given such extraordinarily large benefits to an attacker, and the lack of an effective detection 

mechanism, a highly resourced organization (such as a government) might decide to undertake it. 

Such an organization could supply hundreds of  experts,  working together full-time to deploy 

attacks  over  a  period  of  decades.   Defending  against  this  scale  of  attack  is  far  beyond  the 

defensive abilities of most companies and non-profit  organizations who develop and maintain 

popular compilers.

In short, this is an attack that can yield complete control over a vast number of systems, even 

those systems whose defenders perform independent source code analysis (e.g., those who have 

especially high-value assets), so it is worth defending against.

3.2 Triggers, payloads, and non-discovery

The trusting trust  attack depends on three things:  triggers,  payloads,  and non-discovery.   For 

purposes of  this  dissertation, a “trigger” is  a condition determined by an attacker in which a 

malicious event  is  to occur (e.g.,  when malicious code is  to be inserted into a program).   A 

“payload” is the code that actually performs the malicious event (e.g., the inserted malicious code 

and the code that causes its insertion).  The attack also depends on non-discovery by its victims, 
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that  is,  it  depends  on  victims  not  detecting  the  attack  (before,  during,  or  after  it  has  been 

triggered)7.

For  this  attack  to  be  valuable,  there  must  be  at  least  two  triggers  that  can  occur  during 

compilation:  at  least  one  to  cause  a  malicious  attack  directly of  value  to  the  attacker  (e.g., 

detecting compilation of a “login” program so that a Trojan horse can be inserted into it), and one 

to propagate attacks into future versions of the compiler executable.

If  a  trigger  is  activated  when  the  attacker  does  not  intend  the  trigger  to  be  activated,  the 

probability of detection increases.  However, if a trigger is not activated when the attacker intends 

it to be activated, then that particular attack will be disabled.  If all the attacks by the compiler 

against  itself  are  disabled,  then  the  attack  will  no  longer  propagate;  once  the  compiler  is 

recompiled, the attacks will disappear.  Similarly, if a payload requires a situation that (through 

the process of change) disappears, then the payload will no longer be effective (and its failure 

may reveal the attack).

In this dissertation, “fragility” is the susceptibility of the trusting trust attack to failure, i.e., that a 

trigger will activate when the attacker did not wish it to (risking a revelation of the attack), fail to 

trigger when the attacker would wish it to, or that the payload will fail to work as intended by the 

attacker.  Fragility is unfortunately less helpful to the defender than it might first appear.  An 

attacker  can  counter  fragility  by  simply  incorporating  many  narrowly-defined  triggers  and 

payloads.  Even if a change causes one trigger to fail, another trigger may still fire.  By using 

multiple triggers and payloads, an attacker can attack multiple points in the compiler and attack 

7Even if the attack is eventually detected, if the attacker can be assured that the attack will not be 
detected for a very long time, the attacker may still find it valuable.  The attacker could, for example, use 
this lengthy time to successfully perform other attacks and subvert an infrastructure in many other ways. 
Also, if the original attack is not detected for a long time, it is often increasingly difficult to determine the 
identity of the attacker or at least an important intermediary.  For a summary of techniques that can resolve 
this “attribution” problem, see [Wheeler2003t].
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different subsystems as final targets (e.g., the login system, the networking interface, and so on). 

Thus, even if some attacks fail over time, there may be enough vulnerabilities in the resulting 

system to allow attackers to re-enter and re-insert new triggers and payloads into a malicious 

compiler.  Even if a compiler misbehaves from malfunctioning malware, the results could appear 

to be a mysterious compiler defect; if programmers “code around” the problem, the attack will 

stay undetected.

Since attackers do not want their malicious code to be discovered, they may limit the number of 

triggers/payloads they insert and the number of attacked compilers.  In particular, attackers may 

tend to attack only “important” compilers (e.g., compilers that are widely-used or used for high-

asset projects), since each compiler they attack (initially or to add new triggers and payloads) 

increases the risk of discovery.  However, since these attacks can allow an attacker to deeply 

penetrate systems generated with the compiler, maliciously corrupted compilers make it easier for 

an attacker to re-enter a previously penetrated development environment to refresh an executable 

with new triggers and payloads.  Thus, once a compiler has been subverted, it may be difficult to 

undo the damage without a process for ensuring that there are no attacks left.

The text above might give the impression that only the compiler itself, as usually interpreted, can 

influence results (or how they are run), yet this is obviously not true.  Assemblers and loaders are 

excellent  places to place a trigger (the popular  GCC C compiler  actually generates assembly 

language as text and then invokes an assembler).  An attacker could place the trigger mechanism 

in  the  compiler’s  supporting  infrastructure  such  as  the  operating  system kernel,  libraries,  or 

privileged programs.
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4 Informal description of Diverse Double-Compiling 
(DDC)

The idea of diverse double-compiling (DDC) was first created and posted by Henry Spencer in 

1998 [Spencer1998] in a very short posting.  It was inspired by McKeeman et al’s exercise for 

detecting compiler defects [McKeeman1970] [Spencer2005].  Since this time, this idea has been 

posted  in  several  places,  typically  with  very  short  descriptions  [Mohring2004]  [Libra2004] 

[Buck2004].  This chapter describes the graphical notation for describing DDC that is used in this 

dissertation.  This is followed by a brief informal description of DDC, an informal discussion of 

its  assumptions,  a  clarification  that  DDC  does  not require  that  arbitrary  different compilers 

produce the same executable output given the same input, and a discussion of a common special 

case:  Self-parenting compilers.   This chapter  closes  by answering some questions,  including: 

Why not always use the trusted compiler, and why is this different from N-version programming?

4.1 Terminology and notation

This dissertation focuses on compilers.  For purposes of this dissertation, compilers execute in 

some environment, receiving as input  source code as well as other input from the environment, 

and producing a result termed an executable.  A compiler is, itself, an executable.

Figure 1 illustrates the notation used in this dissertation.  A shaded box shows a compilation step, 

which executes a compiler (input from the top), processing source code (input from the left), and 

uses other input (input from the right), all to produce an executable (output exiting down).  To 
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distinguish the different steps, each compilation step will be given a unique name (shown here as 

“n”).  Source code that is purported to be the source code for the executable Y is notated as sY. 

The result of a compilation step using compiler X, source code  sY, other input I (e.g., run-time 

libraries,  random number  results,  and thread schedule),  and environment  E  is  an executable, 

notated here as compile(sY, cX, I, E).  Where the environment can be determined from context 

(e.g.,  it  is  all  the same)  that  parameter is  omitted;  where that  is  true and any other input  (if 

relevant) can be inferred, both are omitted yielding the notation compile(sY, cX).  In some cases, 

this will be further abbreviated as c(sY, cX).

The  widely-used  “T-diagram”  (aka  “Bratman”)  notation  is  not  used  in  this  dissertation. 

T-diagrams were originally created by Bratman [Bratman1961], and later greatly extended and 

formalized by Earley and Sturgis [Earley1970].  T-diagrams can be very helpful when discussing 

certain kinds of bootstrapping approaches.  However, they are not a universally perfect notation, 

and this dissertation intentionally uses a different notation  because the weaknesses of T-diagrams 

make DDC unnecessarily difficult to describe:
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• T-diagrams  combining  multiple  compilation  steps  can  be  very  confusing 

[Mogensen2007, 219].  This is a serious problem when representing DDC, since DDC is 

fundamentally about multiple compilation steps.

• T-diagrams  quickly grow in  width  when  multiple  steps  are  involved;  since  paper  is 

usually taller than it is wide, this can make complex situations more difficult to represent 

on the printed page.  Again, applying DDC involves multiple steps.

• T-diagrams do not handle multiple sub-components well (e.g., a library embedded in a 

compiler).   The  notation  can  be  “fudged”  to  do  this  (see  [Early1970,  609])  but  the 

resulting graphic is excessively complex.   Again,  compilation of real  compilers using 

DDC often  involves  handling  multiple  sub-components,  making  this  weakness  more 

important.

• T-diagrams create unnecessary clutter  when applied to  DDC.  In  a  T-diagram,  every 

compiler  source  code  and  compiler  executable,  as  well  as  their  executions,  are 

represented by a T.  This creates unnecessary visual clutter, making it difficult to see what 

is executed and what is not.

Niklaus Wirth abandoned T-diagrams in his 1996 book on compilers, without even mentioning 

them [Wirth1996], so clearly T-diagrams are not absolutely required when discussing compiler 

bootstrapping.  The notation of this dissertation uses a single, simple box for each execution of a 

compiler,  instead of a  trio  of  T-shaped figures.   As DDC application becomes complex,  this 

simplification matters.

4.2 Informal description of DDC

In brief, to perform DDC, source code must be compiled twice.  First, use a separate “trusted” 

compiler to compile the source code of the “parent” of the compiler-under-test.  Then, run that 
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resulting executable  to  compile  the  purported source code of  the  compiler-under-test.   Then, 

check if the final result is  exactly identical to the original compiler executable (e.g., bit-for-bit 

equality) using some trusted means.  If it is, then the purported source code and executable of the 

compiler-under-test correspond, given some assumptions to be discussed later.

Figure  2 presents  an  informal,  simplified  graphical  representation  of  DDC,  along  with  the 

claimed origin of the compiler-under-test (this claimed original process can be re-executed as a 

check  for  self-regeneration).   The  dashed  line  labeled  “compare”  is  a  comparison  for  exact 

equality.  This figure uses the following symbols:

• cA: Executable of the compiler-under-test, which may be corrupt (maliciously corrupted 

compilers are by definition corrupt).

• sA: Purported source code of compiler cA.  Our goal is determine if cA and sA correspond.

• cP: Executable of the compiler that is purported to have generated cA (it is the purported 

“parent” of cA).
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Figure 2: Informal graphical representation of DDC
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• sP: Purported source code of parent cP.  Often a variant/older version of sA.

• cT: Executable of a “trusted” compiler, which must be able to compile  sP..   The exact 

meaning of “trusted” will be explained later.

• 1, 2, o1, o2: Stage identifiers.  Each stage executes a compiler.

• stage1, stage2: The outputs of the DDC stages.  Stage1 is a function of cT and sP, and can 

be  represented  as  c(sP,  cT)  where  “c”  means  “compile”.   Similarly,  stage2  can  be 

represented as c(sA, stage1) or c(sA, c(sP, cT)).

The  right-hand-side  shows  the  process  that  purportedly  generated  the  compiler-under-test 

executable cA in the first place.  The right-hand-side shows the DDC process.  The process graphs 

are  very  similar,  so  it  should  not  be  surprising  that  the  results  should  be  identical.   This 

dissertation formally proves this (given certain conditions) and demonstrates that this actually 

occurs with real-world compilers.

Before performing DDC itself, it is wise to perform a regeneration check, which checks to see if 

we  can  regenerate  cA using  exactly the  same  process  that  was  supposedly used  to  create  it 

originally8.  Since cA was supposed to have been created this way in the first place, regeneration 

should produce the same result.  In practice, the author has found that this is often not the case. 

For example, many organizations’ configuration control systems do not record all the information 

necessary to accurately regenerate a compiled executable, and the ability to perform regeneration 

is  necessary  for  the  DDC process.   In  such  cases,  regeneration  acts  like  the  control  of  an 

experiment;  it  detects  when  we  do  not  have  proper  control  over  all  the  relevant  inputs  or 

8DDC will not create an identical executable unless the regeneration check would succeed, and so from 
that perspective the regeneration check is mandatory.  Performing the regeneration check has not been 
made mandatory, because there may be other evidence that it would succeed, but in most cases it is strongly 
recommended.
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environment.   Corrupted  compilers  can  also  pass  the  regeneration  test,  so  by  itself  the 

regeneration test is not sufficient to reliably detect corrupted compilers.

We then perform DDC by compiling twice.  These two compilation steps are the origin of this 

technique’s name: we compile twice, the first time using a different (diverse) trusted compiler. 

All compilation stages (stage 1 and stage 2, as well as the regeneration test) could be performed 

on the same or on different environments.  Libraries can be handled in DDC by considering them 

as part of the compiler (if they are executed in that stage) or part of the source code (if they are 

used as input data but not executed in that stage).

Note that the DDC technique uses a separate trusted compiler as a check on the compiler-under-

test.   The  trusting  trust  attack  assumes  that  all  later  generations  of  the  compiler  will  be 

descendants of a corrupted compiler; using a completely different second compiler can invalidate 

this assumption.  The trusted compiler and its environment may be malicious, as long as that does 

not impact their result during DDC, and they may be very slow.

The formalized DDC model, along with formalized assumptions and its proof, are presented in 

chapter 5.

4.3 Informal assumptions

All approaches have assumptions.  These will be formally and completely stated later, but a brief 

statement of some key assumptions should help in understanding the approach:

• DDC must be performed only by trusted programs and processes, including a trusted 

compiler  cT,  trusted  environment(s)  to  run  DDC,  a  trusted  comparer,  and  trusted 

processes and tools to acquire the compiler-under-test cA and the source code sP and sA.
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In this dissertation, something is “trusted” if we have justified confidence that it does not 

have triggers and payloads that would affect the results of DDC.  A trusted program or 

process may have triggers and payloads, as long as they do not affect the result.  A trusted 

program or process may have defects, though as shown later, any defects that affect its 

result in DDC are likely to be detected.  Methods to increase the level of confidence are 

discussed in chapter 6.

• Compiler cT must have the same semantics for the same constructs as required by sP.  For 

example,  a  Java(TM) compiler  cannot  be  used  directly as  cT if  sP is  written  in  the  C 

language.  If sP uses any nonstandard language extensions, or depends on a construct not 

defined by a published language specification, then cT must implement them in the way 

required  by  sP.   Any defect  in  cT can  also  cause  problems  if  it  affects  compiling  sP 

(otherwise it is irrelevant for DDC).

• The  compiler  defined  by  sP should  be  deterministic given  its  inputs.   That  is,  once 

compiled,  and then executed multiple times given the same inputs,  it  should produce 

exactly the same outputs each time.  If the compiler described by sP is non-deterministic, 

in some cases it could be handled by running the process multiple times, but it is often 

easier  to  control  enough  inputs  to  make  the  compiler  deterministic.   Note  that  the 

regeneration process is helpful in detecting undesired non-determinism.

DDC does not determine if the source code is free of malicious code; DDC can only show if 

source code corresponds to a given executable.  If the goal is to show that the compiler cA is not 

malicious, then the source code (sA and  sP) must also be reviewed to determine that the source 

code is not malicious.  This is still an important change—it is typically far easier to review source 

code than to review executables.  In some cases sA and sP are extremely similar; in such cases they 
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can be simultaneously reviewed by reviewing one and then reviewing their differences.  There is 

also an important special case—when sP=sA—that is described in section 4.5.

But first, we must clarify that DDC does not require something that is unlikely.

4.4 DDC does not require that different compilers produce 
identical executables

DDC does not require that arbitrary different compilers produce the same executable output, even 

given the same input.  Indeed, this would be extremely unlikely for source code the size of typical 

compilers.  Compiler executables cA, cP, and cT might even run on or generate code for different 

CPU architectures, making identical results extremely unlikely.

Instead, DDC runs a different executable; under certain conditions, this must produce the “same” 

result.  This is perhaps best explained by example.  Imagine two properly-working C compilers, 

both of which are given this source code to print the result of calculating 2+2:

#include <stdio.h>
main() {

printf("%d\n", 2+2);
}

The executables produced by the two compilers are almost certainly different, but running these 

two programs on their respective environments must produce the same result for this line (once 

converted into the same text encoding format).  Obviously, this depends on them implementing 

the same language (for the purposes of the given Source).

The conditions where  this  occurs are defined more formally in  chapter  5.   In  particular,  see 

section 5.7.9, where this is examined in more detail.
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4.5 Special case: Self-parenting compiler

An important special case is when  sP=sA,  that is,  when the putative source code of the parent 

compiler is the same as the putative source code of the compiler-under-test.  There are often good 

reasons for releasing executables generated this way.  For example, a compiler typically includes 

many  optimization  operations;  each  new  version  of  a  compiler  may  add  new  or  improved 

optimization operations.  By releasing a self-parented compiler (a compiler generated by setting 

sP=sA and compiling twice), the supplier would release a compiler executable that uses the latest 

versions of those optimizations, giving the compiler itself maximum performance.  Many existing 

compilers (including as GCC) use the compiler bootstrap test (essentially the self-regeneration 

check)  to  test  themselves,  so  a  compiler’s  build  and  test  process  may  already  include  an 

automated way to create a self-parenting compiler.  Figure 3 shows how figure 2 simplifies in this 

case.

Because this is a common case, the older paper [Wheeler2005] only considered this case.  In 

contrast, this dissertation considers the more general case, subsuming self-parenting as a special 

case.

Having a self-parenting compiler can simplify the application of DDC.  As discussed in more 

detail below, DDC only shows that source code and executable correspond, so review of compiler 

source code is still required if the goal is to show that there is no malicious code in an executable. 

In the general case, both  sA  and  sP must be reviewed.  Since  sA=sP in a self-parented compiler, 

reviewing both sA and sP can be done by reviewing just  sA, simplifying the use of DDC.  Also, 

when a compiler is its own parent, a simplified regeneration check may be used to detect many 

problems without  performing the complete regeneration test.   This test,  which can be termed 
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“self-regeneration”, simply uses cA to compile its putative source code  sA; the regeneration is 

successful if the generated executable is the same as the original cA.

It is still useful to be able to handle the general case.  Compiler cP need not be a radically different 

compiler; it might simply be an older version of cA, differ only in its use of different compilation 

flags, or differ only in that it embeds a different version of a library executable.  Nevertheless, if 

cP and cA are different, the general form of DDC must be used.  Also, it is possible to have a 

“loop”  of  compilers  that  mutually  depend  on  each  other  for  self-regeneration  (e.g.,  a  Java 

compiler written in C and a C compiler written in Java might be generated using each other).  In 

this case, the more general form of DDC is needed to break the loop.
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Figure 3: Informal graphical representation of DDC for self-regeneration case
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4.6 Why not always use the trusted compiler?

DDC uses a second “trusted” compiler cT, which is trusted in the sense that we have a justified 

confidence that cT does not have triggers or payloads that affect recompiling sP and sA (see section 

4.3).  We can now answer an obvious question: Why not always use the trusted compiler cT?

First, there are many reasons compiler cT might not be suitable for general use.  For example, 

compiler cT may be slow, produce slow code, generate code for a different CPU architecture than 

desired, be costly, or have undesirable software license restrictions.  It  may lack many useful 

functions necessary for general-purpose use (in DDC, trusted compiler cT only needs to be able to 

compile sP).  It is possible that the only purpose of the trusted compiler is to operate as a trusted 

checker for the more widely-used compiler, in fact, there are good reasons to do so.  It is much 

easier to verify (and possibly formally prove) a simple compiler that has limited functionality and 

few optimizations; such compilers might not be suitable for general production use, but would be 

ideal as trusted compilers used to check production compilers.  The trusted compiler could even 

be a “secret” compiler that is never publicly released (as source, executable, or a service); an 

attacker would find it extremely difficult to avoid detection by DDC if such a trusted compiler 

were used.

Second, using a different trusted compiler cT greatly increases the confidence that the compiler 

executable cA corresponds with source code  sA.  When a second compiler cT is used as part of 

DDC,  an  attacker  must  subvert  multiple executables  and  executable-generation  processes  to 

perform the “trusting trust” attack without detection.  It is true that the trusted compiler cT could 

be used as a “trusted bootstrap” compiler that would always be used to generate each new version 

of cA.   This could be done even if cT is not suitable for general use.  However, if we always 

generate updated versions of cA this way, and never use DDC, we have merely moved the trusting 
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trust attack to a different location: We must now perfectly protect cT and the bootstrap process 

used to create each new version of cA.  Should the protection of cT ever fail, an attacker might 

change cT into a maliciously corrupted compiler cT´, resulting in the potential corruption of future 

versions of cA.  By using DDC with a different trusted compiler cT, cT is used as a separate check, 

requiring an attacker to subvert  two different  compilers and compiler-generation processes to 

avoid detection.  Indeed, DDC could be performed multiple times using different compilers as cT 

and/or different environments, requiring an attacker to subvert all of the DDC processes to avoid 

detection.   Using DDC with a  different  compiler  cT greatly increases  the  confidence that  cA 

exactly corresponds with sA; using DDC multiple times can increase that confidence still further.

4.7 Why is DDC different from N-version programming?

N-version programming “has been proposed as a method of incorporating fault  tolerance into 

software.  Multiple versions of a program (i.e., ‘N’) are prepared and executed in parallel.  Their 

outputs are collected and examined by a voter, and, if they are not identical, it is assumed that the 

majority  is  correct.   This  method  [assumes]  that  programs  that  have  been  developed 

independently will fail independently” [Knight1986].

John Knight  and Nancy Leveson performed an experiment  with N-version programming and 

showed that, in their experiment, “the assumption of independence of errors that is fundamental 

to some analyses of N-version programming does not hold” [Knight1986] [Knight1990].  Instead, 

they found that if one program has a failure when processing a particular input, there was an 

increased likelihood of failure (compared to random failure) for another program with the same 

input,  given that both programs were written to the same specification.  This is an important 

result.   It  is  not  hard  to  see  why  this  might  be  true;  for  example,  if  certain  areas  of  the 

specification  are  unusually  complex,  two  different  programmers  might  both  fail  to  meet  it. 
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However,  this  result  does  not  invalidate  DDC,  because  the  circumstances  in  DDC are  very 

different from this and similar experiments.

In the Knight and Leveson work, N different programs were developed by different developers 

attempting to implement the same specification.  In contrast, the purpose of applying DDC is to 

detect  when  two  different  compiler  executables  have  been  developed to  implement  different 

specifications, that is, when one program is written to attempt to compile source code accurately, 

while another program is written to produce corrupted results in certain cases.  However:

• These changes are extremely unlikely to happen unintentionally (and in the same way) in 

both the trusted compiler and the original process used to create the compiler-under-test. 

Creating a corrupting compiler  that  is  self-perpetuating and selectively corrupts other 

programs requires clever programming [Thompson1984] and significantly changes the 

compiler executable (for an example, see the differences shown in section A.5).

• These changes are extremely unlikely to happen intentionally in the trusted compiler and 

DDC process in general.  This is by definition of the term “trusted”—we have justified 

confidence that  the DDC process (including the trusted compiler)  is  unlikely to have 

triggers or payloads that affect DDC results.

• Since  the  kind  of  differences  that  motivate  DDC  are  extremely  unlikely  to  occur 

unintentionally or intentionally, the entire scenario is extremely unlikely.

Also, in the Knight and Leveson experiment, the issue was to determine if the different programs 

would  produce  identical  results  across  all  permitted  inputs  to  the  different  programs.   Their 

experiment simulated use of the N programs using one million test inputs, corresponding to about 

twenty years of operational use “if the program is executed once per second and unusual events 

occur every ten minutes”.  In contrast, in DDC, there is only one relevant input: the source code 
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pair sP and sA.  Granted, these inputs will have a complex internal structure, but these are the only 

inputs that matter, as compared to the wide range of possible inputs a compiler might accept. 

Thus, in DDC we do not have the situation where there is a wide variety of potential test inputs; 

we have only one pair of inputs, and they are the only ones that matter.

There is a special case where the Knight and Leveson results do directly apply to DDC.  This is 

when the original compiler and trusted compiler both fail to correctly compile the source code (sP 

and  sA),  and this failure happens to produce the same results.  DDC will not detect that both 

compilers are performing incorrectly in the same way.  The Knight and Leveson paper shows that 

such program failures are not completely statistically independent, and thus this kind of failure is 

somewhat more likely than an independence model would predict.  However, there are several 

reasons to believe that this special case is rare for mature compilers.  First, mature compilers 

typically pass a large test suite, reducing the risk of such defects.  Second, compilers are usually 

part of their own test suite, reducing the likelihood that a compiler will fail to correctly compile 

itself.  Third, section  7.1.3 demonstrates that even when a compiler fails to correctly compile 

itself, DDC may still detect it.  But all of this is beside the point.  Since the purpose of applying 

DDC is to detect intentional self-perpetuating attacks,  and not to prove total correctness, this 

special case does not invalidate the use of DDC to detect and counter the “trusting trust” attack.

Thus, the Knight and Leveson results do not invalidate DDC for the purpose of detecting and 

countering the “trusting trust” attack.

4.8 DDC works with randomly-corrupting compilers

DDC works even if an ancestor of cA randomly corrupts its results.  If the compiler-under-test was 

not corrupted, DDC will correctly report this; otherwise, DDC will expose the corruption.
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5 Formal proof

This  chapter  presents  a  formal  proof  of  DDC.   The  first  section  presents  a  more  complete 

graphical model of both the DDC process and how the compiler-under-test is claimed to have 

been created.  This is followed by a description of the formal notation used (first-order logic 

(FOL) with equality),  the rationales used in proof  steps  (aka the  derivation rules  or  rules of 

inference), the tools used, and various proof conventions.  After this, the three key proofs are 

presented.  Each proof presents a set of predicates, functions, and assumptions about DDC in the 

formal notation, and shows how they lead to the concluding proof goal.  The three proofs are:

• Proof #1,  goal source_corresponds_to_executable:  This is  the key proof for DDC.  It 

shows that given certain assumptions, if stage2 (the result of the DDC process) and cA 

(the original compiler-under-test) are equal, then the executable cA and the source code sA 

exactly correspond.

• Proof #2, goal always_equal: This proves that, under “normal conditions” (such as when 

compiler executables  have not been rigged and thus  do correspond to their respective 

source code), cA and stage2 are in fact always equal.  Thus, the first proof is actually 

useful, because its assumptions will often hold.  This also implies that if cA and stage2 are 

not equal, then at least one of its assumptions is not true.

• Proof  #3,  goal  cP_corresponds_to_sP:  The  previous  “always_equal”  proof  does  not 

require that a “grandparent” compiler exist, but having one is a common circumstance. 

This third proof shows that if there is a grandparent compiler, one of the assumptions of 
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proof #2 can be proved given other assumptions that may be easier to verify (potentially 

making DDC even easier to apply in this common case).

5.1 Graphical model for formal proof 

Figure  4 graphically  represents  the  DDC  stages  and  how  the  compiler-under-test  cA was 

putatively created.  This is a more rigorous version of figure 2; the formal model includes more 

detail to accurately model potentially-different compilation environments and the effects these 

environments have on the compilation processes.

This dissertation argues that if the DDC process produces a “stage2” that is identical to the cA, 

and certain other assumptions are true, then the executable stage2 corresponds to the source code 

sA.   The similarity of the DDC process and claimed origin figures suggest that this might be 

reasonable, but the challenge is to formalize exactly what those assumptions are, and then prove 

that this is true from those assumptions.
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5.1.1 Types

Although types (sorts) are not directly used in the proof, it is easier to explain the graph and 

proofs by assigning types to the various constants used.  There are four basic types:

• Data: For our purposes, data is information that is used as source code (input) and/or is 

the resulting executable (output) of a compilation.  Some of the data could be both source 

and executable (e.g., a library object file could be executed during compilation and also 

copied into the final executable).  Thus, as implied by its definition, data can be either (or 

both):

– Executable:  Data that can be executed by a computing environment.   Compilers 

produce executables, and compilers themselves are executables.

– Source:  Data that can be compiled by a compiler to produce an executable.  Any 

source (aka source code) is written in some language.

• Environment: A platform that  can run executables.   This would include the computer 

hardware (including the central processing unit) and any software that supports or could 

influence the compiler’s result (e.g., the operating system).  It could include a byte code 

interpreter or machine simulator.

• Language: The language, used by some source, that defines the meaning of the source.

• Effects: All information or execution timing arising from the environment that can affect 

the results of a compilation, but is not part of the input source code.  This is used to 

model  random  number  generators,  thread  execution  ordering,  differences  between 

platforms allowed by the language, and so on.  Note that this is not  simply data in the 

usual sense, since other issues such as thread execution ordering are included as effects.
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5.1.2 DDC components

The DDC process, as shown in figure 4, includes the following components, with the following 

types and meanings:

• cT: Executable.  The trusted compiler.  It is trusted in the sense that it is trusted to not 

have triggers or payloads that will activate when compiling source sP.

• sP: Source.  The (putative) source code of the “parent” compiler.

• sA: Source.  The (putative) source code of the compiler-under-test (cA).

• e1: Environment.  The environment that executes compilation step 1, which uses cT to 

compile sP and produce stage1.

• e2: Environment: The environment that executes compilation step 2, which uses stage1 to 

compile sA and produce stage2.

• eArun: Environment: The environment that stage2 is intended to run on.

• lsP, lsA: Language.  The languages used by source sP. and sA, respectively.

• e1effects: Effects.  The effects sent from environment e1 to compilation step 1.

• e2effects: Effects.  The effects sent from environment e2 to compilation step 2.

• stage1: Executable.  The result of DDC compilation step 1.  This will be defined, using 

the functional notation below, as compile(sP, cT, e1effects, e1, e2).

• stage2:  Executable.   The result  of  DDC compilation step 2.   This will  be defined as 

compile(sA, stage1, e2effects, e2, eArun).

Note that sA may be equal to sP, e1 may be equal to e2 or eArun, e2 may be equal to eArun, and 

lsA may be equal to lsP.  These identities are permitted but not required by DDC.  All processes 

(including the compilations and their underlying environments, the process for acquiring cA, and 
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the process for comparing cA and stage2) must be trusted (i.e., they must not have triggers or 

payloads that affect their operation during DDC).

5.1.3 Claimed origin

The compiler-under-test cA was putatively developed by a similar process.  This “claimed origin” 

process can also be modeled, with the following components not already described in the DDC 

process:

• cGP: Executable.  The grandparent compiler, if there is one.

• eP: Environment.  The environment that executes compilation step o1, which uses cGP to 

compile source sP and produce executable cP.

• eA: Environment: The environment that executes compilation step o2, which uses cP  to 

compile sA and produce cA.

• ePeffects: Effects.  The effects sent from eP to compilation step o1.

• eAeffects: Effects.  The effects sent from eA to compilation step o2.

• cP: Executable.  Putative parent compiler.

• cA: Executable.  The compiler-under-test, which putatively was developed by the process 

above.

Note that compiler-under-test cA may, in fact, be different than if it were really generated through 

this process.   But if cA was generated through this process, we can prove that certain outcomes 

will result, given certain assumptions, as described below.
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5.2 Formal notation: First-Order Logic (FOL)

The formal logic used in this dissertation is classical first-order logic (FOL) with equality, aka 

first-order predicate logic.  FOL was selected because it is a widely understood and accepted 

formal  logic  system9.   This  dissertation  uses  the  FOL notation  and  conventions  defined  in 

[Huth2004, 93-139].  In FOL, every expression is a term or a formula.

A term (which denotes an object) is defined as: a variable, a constant, or a function application of 

form f 1 ,2 , ... ,n where each of the zero or more comma-separated parameters is a term.  In 

this dissertation, variables begin with an uppercase letter, while constants begin with a lowercase 

letter (this is the same convention used by Prolog).

A  formula (which  denotes  a  truth  value)  is  defined  as:  ¬,  ∧,  ∨,  ,  ∀, 

1=2, 1≠2, or a predicate of form p1 ,2 , ... ,n where each of the one or more comma-

separated parameters is a term.  This definition requires that   and   are formulas,   is an 

unbound variable, and anything beginning with  is a term.

In some sense,  a  formula  is  a boolean expression that  represents  true  or  false,  while a term 

represents any non-boolean type.  Functions and predicates have the same syntax if they have any 

parameters.   Table  1 shows  the  traditional  FOL notation  for  FOL expressions  (terms  and 

formulas),  an  equivalent  American  Standard  Code  for  Information  Interchange  (ASCII) 

representation, and a summary of its meaning10:

9For an “analysis and interpretation of the process that led to First-Order Logic and its consolidation as 
a core system of modern logic” see [Ferreirós2001].  An alternative to classical logic is intuitionist logic, 
which does not accept the equivalence of ¬¬ and  as being universally true; [Hesseling2003] describes 
in detail the early history of intuitionist logic.

10As a notation, FOL does have weaknesses.  For example, predicates and functions cannot have 
formulas (booleans) as parameters, so traditional FOL cannot express a function if_then_else(formula1,  
term1, term2) that returns term1 if formula1 is true, else it returns term2.  FOL also does not include built-
in support for types (sorts).  There are extensions and alternatives which remove these weaknesses. 
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Table 1: FOL notation
Traditional 

Notation
ASCII 

Representation
Meaning

¬ - PHI not , aka negation.  If  is true, ¬ is false; if  is false, 
¬ is true.  ¬¬ is equivalent to .

∧ PHI & PSI Φ and Ψ, aka conjunction, aka “logical and”.  Both Φ and Ψ 
must be true for the expression to be true.

∨ PHI | PSI Φ or Ψ, aka disjunction, aka “logical inclusive or”.  Φ, Ψ, or 
both must be true for the expression to be true.

 PHI -> PSI Φ implies Ψ, aka implication, entailment, or “if Φ, then Ψ”. 
Equivalent to  ¬∨.

∀ all Chi PHI For-all, aka universal quantification.  For all values of 
variable , is true.  In this dissertation, this is optional; all 
unbound variables are universally quantified.

1=2 tau_1 = tau_2 τ1 equals τ2.  If true, τ2 can substitute for τ1.

1≠2 tau_1 != tau_2 τ1 is not equal to τ2.  Equivalent to ¬=.

x (1 ,2 ,
     ... ,n )

x(tau_1, tau_2, ..., 
tau_n)

Function or predicate x with terms 1 ,2 , ... ,n.  A 
predicate is like a function that returns a boolean.

Parentheses are used to indicate precedence.  FOL also has a “there exists” notation (using  ∃) 

which is  not  directly used in  this  dissertation.   A formula  is  either  true  or  false  (this  is  the 

principle of the excluded middle); thus, ∨¬ is true for any formula .  In this dissertation, a 

top-level FOL formula is terminated by a terminating period (“.”).

For example, the following FOL formula could represent “all men are mortal”:

man(X) -> mortal(X).

This formula can be read as “for all values of X, if X is a man, then X is mortal”.  Note that “X” 

is a variable, not a constant, because it begins with a capital letter.  Also note that since X is not 

bound, an implied “all X ...” surrounds the entire formula.

However, since these FOL weaknesses do not interfere in the proof of DDC, and since traditional FOL is 
both widely-understood and widely-implemented, FOL is used in this dissertation.

50



In addition, the following formula could be used to represent “Socrates is a man”:

man(socrates).

From these two formulas, it can be determined that “Socrates is mortal”:

mortal(socrates).

FOL is a widely-used general notation, and not designed for proofs about specific fields (such as 

compilation).  Thus, as with most uses of FOL, additional “non-logical” symbols must be added 

before particular problems can be analyzed.  In this dissertation, these additions are the various 

constant terms in the graphical model described in 5.1 (above), as well as various predicates and 

functions  that  will  be  defined below.   The proofs  below will  introduce these  predicates  and 

functions,  as  well  as  various  assumptions,  and  then  show that  certain  important  conclusions 

(termed “goals”) can be formally proved from them.  Some assumptions define a term, predicate, 

or function; these assumptions are also called “definitions” in this dissertation.

All formal models, including the one in this dissertation, must include lowest-level items (such as 

predicates, functions, and constants) that are not defined in the formal model itself.  Therefore, it 

is unreasonable to protest that these lowest-level items are not defined in this model, since that is 

necessarily true.  The key is that the lowest-level items should accurately model the real world, 

thus forming a rational basis for proving something about the real world.

5.3 Proof step rationales (derivation rules or rules of inference)

Every step in each formal proof must have a rationale (aka a derivation rule or rule of inference). 

In this dissertation, only the following rationales are permitted in the formal proofs (for clarity, 

the terminating “.” in top-level formulas is omitted in this list):

• Assumption: Given assumption.  All definitions are assumptions.

• Goal: The given goal to be proved.

51



• Clausify:  Transform  a  previous  step  (formula)  into  a  normalized  clausal  form.   In 

particular,  all  expressions  of  the  form   are  transformed  into  ¬∨.   For 

example, using the example in section  5.2, “man(X)  -> mortal(X)” can be transformed 

into  “-man(X)  |  mortal(X)”.   See  [McCune2008]  and  [Duffy1991]  for  a  detailed 

description.

• Copy...flip: Copy a previous result but reverse the order of an equality statement.  Thus, 

given =, this rationale can produce =.

• Deny: Negate a previous step; this processes the goal statement.  All formal proofs in this 

chapter are proofs by contradiction; the goal is negated by the “Deny” rule, and the rest 

of the proof shows that this leads to a contradiction.

• Resolve:  Resolution  (aka  general  resolution),  that  is,  produce  a  resolvant  from  two 

clauses.  Resolution is a generalized version of ground (propositional) resolution, so to 

explain resolution, we will first explain ground resolution.

Ground resolution is a derivation rule that applies to clauses in propositional logic (a 

simpler logic than FOL that lacks terms, predicates, functions, quantification (for-all and 

there-exists), and equality; variables are true or false).  Ground resolution requires two 

ground clauses (formulas) which can be reordered into the forms  ∨ and  ' ∨, 

where  '  is a complement (negation) of formula  , and where ,  , or both may be 

empty.  From that, ground resolution can derive  ∨  removing any duplicates (this 

can be informally viewed as combining the two clauses with  and '  “canceling” each 

other).  If both   and   are empty, the empty clause (false) is derived.  For example, 

given both P∨Q and ¬P∨R, ground resolution can derive Q∨R.  Ground resolution is 

a sound rule for reasoning because any formula  must be either true or false:  If  is 
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false, and ∨ is true, then  must be true.  If  is true, then  '  is false, and since 

 ' ∨ is true, then  must be true.  Since either  or  must be true, it follows that 

∨ is always true.  The traditional logic rule modus ponens (given  and , then 

) is a special case of ground resolution;   can be rewritten (using clausify)  as 

¬∨, and ground resolution can combine  with ¬∨ to derive .

The full resolution rule extends ground resolution so that it can handle quantifiers and 

predicates.  It does this by using unification, the process of replacing the variables in the 

expressions with terms to make the modified expressions identical to each other.  For 

details, see section 3.3 of [Duffy1991] or [Robinson2001].

For  example,  given  “-man(X)  |  mortal(X)”,  we  can  substitute  “X=socrates”  yielding 

“-man(socrates) | mortal(socrates)”; this can then be combined with “man(socrates)” to 

prove “mortal(socrates)”.

• Para: Paramodulation, a rule that adds support for the equality relation.  This replaces an 

expression with another expression it is equal to, including any parameter substitutions. 

For example, given “f(d, e, X)” and “f(A, B, C)=g(C, B, A)”, paramodulation can derive 

“g(X, e, d)”.  The precise definition of this rule is complex (e.g., it handles cases where 

the  equality  holds  only  under  certain  conditions);  for  details,  see  section  3.3.7  of 

[Duffy1991] or [Robinson2001].

These proof step rationales (aka derivation rules or rules of inference) were used because they are 

the rationales supported by the selected proof tools.
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5.4 Tools and rationale for confidence in the proofs

5.4.1 Early DDC proof efforts

Early versions of these proofs were developed by hand.  Unfortunately, it was very difficult to 

rigorously check or amend those hand-created proofs11.

The  tool  named  Prototype  Verification  System (PVS)  was  then  used  for  some  time,  in  part 

because it has a powerful notation that supports type-checking (which can eliminate some errors) 

and higher-order logic [Owre2001].  At the time, it was thought that higher-order logic would be 

especially helpful, since a compiler can be viewed as a computational function that produces a 

computational function.  However, while PVS is very good at what it does, and several proofs 

were created using PVS, PVS required a large amount of manual effort to produce the proofs. 

These early proofs showed that  higher-order logic was not  necessary or especially helpful  in 

modeling this particular problem, and that other logic systems and provers could be used instead. 

Many other tools have less powerful notations (e.g., first-order logic without types) but can better 

automate proof development.

5.4.2 Prover9, mace4, and ivy

The final proofs, as presented in this dissertation, were developed and checked with the assistance 

of several related tools: prover9, mace4, and ivy:

• Prover9 is an automated theorem prover for first-order and equational (classical) logic, 

which uses an ASCII representation of FOL.  All of the proofs given in this chapter were 

developed by prover9 version Aug-2007.

11 For example, the original hand-created proofs did not account for the possibility of different 
environments.  When attempting to modify the proofs to account for the different environments, the painful 
“bookkeeping” required to keep the proof accurate soon led the author to look for an automated tool.
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• Mace4 is a tool paired with prover9 that searches for finite structures satisfying first-

order and equational statements (the same kind of statement that Prover9 accepts).  From 

a logic  point  of  view,  mace4 produces  interpretations  which are  models  of  the  input 

formulas; from a mathematical point of view, mace4 produces structures satisfying the 

input formulas.  Put simply,  mace4 tries to find an assignment of integers 0..n-1 (the 

“domain”) to each constant  term,  to each function (given their  possible inputs in the 

domain),  and  true/false  values  for  each  predicate  that  will  satisfy  the  given  set  of 

statements.  By default, mace4 starts searching for a structure of domain size 2, and then 

it increments the size until it succeeds or reaches some limit.

• Ivy is a separate proof checker that can accept and verify the proof as output by prover9. 

Ivy is written using A (sic) Computational Logic for Applicative Common Lisp (ACL2) 

and has itself been proven sound using ACL2 [McCune2000].  All of the prover9 proofs 

were verified by ivy.  Indeed, one reason prover9 was chosen over some other tools was 

the availability of ivy.

Far more detail about prover9 is provided in [McCune2008]; its general approach (in particular, 

information on resolution and paramodulation) is discussed in detail in texts such as [Duffy1991] 

and [Robinson2001].  For purposes of this dissertation, prover9 is given a set of assumptions and 

a  goal  statement,  using  first-order  logic  (FOL)  with  equality.   Prover9  negates  the  goal, 

transforms all assumptions and the goal into simpler clauses, and then attempts to find a proof by 

contradiction.  Should prover9’s search algorithm find a proof, it can print the sequence of steps 

and the rationale for each step that leads to the proof.

55



5.4.3 Tool limitations

Unlike  PVS,  traditional  FOL and the  prover9  tool  (which  implements  FOL)  do  not  directly 

support types (sorts).  It is possible to implement types (sorts) using FOL: types of constants can 

be declared as assertions (e.g., “executable(cA)” could represent “cA is an executable”), assertions 

about compilers could be modified to state the types of compiler inputs and outputs, and the goal 

could be extended to include type requirements.   However, because prover9 does not directly 

support type declaration, implementing types in prover9 makes the proofs far more complicated. 

These complications do not add value, because the types of compiler input and output are not in 

doubt  (and  thus  do not  need  proof).   In  this  dissertation types  are  only used  as  part  of  the 

comments to clarify the proof results, and are not directly expressed in the proof notation.

It should be noted that these tools did not make creating the proofs trivial.  In particular, prover9 

can only find a proof given a correct goal and assumptions.  When prover9 cannot prove a goal, it 

either halts with a declaration that it cannot prove the result or it times out.  In either case it is 

often difficult to determine why the proof cannot be found.  The companion tool mace4 may be 

able to find a counter-example, but even then it is often not obvious what is wrong.  In practice, 

the  proofs  were  developed  by  first  creating  very  simplified  models  of  the  world,  and  then 

expanding them stepwise to model additional complexities of the real world.

Prover9 will sometimes use information it does not need, leading to overly-complicated proofs. 

To  counteract  this,  each  proof  was  developed  separately  and  includes  only  the  statements 

necessary for the proof.
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5.4.4 Proofs’ conclusions follow from their assumptions

There are many reasons to have very high confidence that the formal proofs’ conclusions follow 

from their assumptions:

• The proofs were automatically generated by an automated tool, prover9.  This eliminates 

many opportunities for error caused by manual proofs.

• The generated proofs were verified by the separate tool ivy.  Ivy cannot create proofs; it 

is a simple program that checks that each step is correct.  This cross-checking increases 

the confidence that the proof is correct.

• Ivy itself has has been proven sound using ACL2.

• The source code for prover9, ivy, and ACL2 are all publicly visible under the terms of the 

GNU General Public License (GPL).  This public visibility enables widespread public 

review.

• The proofs were hand-verified by the author.  They have also been reviewed by several 

people at the Institute for Defense Analyses (IDA) and by the PhD committee members.

In short, there are good reasons to have very high confidence that these proofs correctly prove 

their goals, given their assumptions.

5.4.5 Proofs’ assumptions and goals adequately model the world

A related question is whether or not the formally-stated assumptions are an adequately accurate 

model of the real world.  There are good reasons to believe this is also true:

• The assumptions have been proven to be consistent using mace4.  In classical logic an 

inconsistent set of assumptions can be used to prove any claim, so it is important that a 

set of assumptions be consistent.   If a set of first-order statements are simultaneously 
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satisfiable, then that set is consistent (see page 410 of [Stoll1979] for a proof of this 

statement).  The set of assumptions in each of the three proofs have been shown by the 

mace4 tool to be satisfiable (i.e., for each proof mace4 can create a model that satisfies 

the set of assumptions).  Therefore, the assumptions used in each proof are consistent. 

See appendix  C for the mace4 models that show the assumptions are consistent.  For 

another  example  of  a  project  that  used  mace4  to  check  for  consistency,  see 

[Schwitter2006].

• The assumptions and goals are based on the informal justification previously published in 

the  2005 ACSAC paper  [Wheeler2005].   This  paper  passed independent  peer  review 

before its publication, and no one has refuted it since.

• These assumptions and goals have been reviewed by the author, several people at the 

Institute for Defense Analyses (IDA), and all of the dissertation committee members.

• All of the outcomes from the demonstrations described in chapter 7 can be explained in 

terms of these proofs.

• The formalization process forced the author to clarify that three proofs were needed, not 

just one.  Originally, the author intended to only create one proof (proof #1), but as it was 

developed, it became clear that multiple proofs were needed.  This suggests that insight 

was gained through the process of developing the formal proof, and an author who has 

gained insight into the problem is more likely to produce final assumptions and goals that 

adequately model the world.

• The proofs clearly fit together.  Proof #3 shows that if there is a benign environment and 

a grandparent  compiler,  then cP_corresponds_to_sP (to be defined) is  true.   Proof #2 

shows  that  if  there  is  a  benign  environment  and  cP_corresponds_to_sP is  true,  then 

stage2=cA.  And finally, proof #1 shows that if stage2=cA, then cA and sA correspond.
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Therefore, there are good reasons to believe that these assumptions and goals adequately model 

the real world.

5.5 Proof conventions

The notation of  prover9 only supports  simple  ASCII  text,  and  does  not  directly support  the 

Unicode characters for logic notation (such as →) nor subscripts (such as cA) by default.  Thus, 

the ASCII representation is used for all prover9 representations and results below.   Constants 

with subscripts are represented by simply appending the subscript value, e.g., cA is notated as cA. 

Spaces and newlines are occasionally inserted to improve readability.   All successful prover9 

proofs  end  with  the  conclusion  “$F”  (false).   This  means  that  prover9  was  able  to  find  a 

contradiction given the assumptions and the negation of  the goal.   Definitions are  a  kind of 

assumption;  their  names  begin  with  “definition_”  if  they  are  of  the  form  “constant  = 

EXPRESSION”, and begin with “define_” otherwise.  In the prover9 proof,  assumptions and 

goals are assigned names using the prover9 “label” attribute (not shown in this dissertation).

Each of the proofs below begins with a formal statement (using FOL formulas) of the goal to be 

proved, along with a textual explanation.  This is followed by sections that introduce the required 

predicates, functions, and assumptions, as well as restating the goal.  The predicates and functions 

are first described by showing in a fixed-width font the keyword “predicate” or “function”, the 

predicate/function name, and its parentheses-surrounded parameters (using initial capital letters). 

The assumptions (including definitions) and goal are first described using FOL formulas ending 

with a period.  Predicates, functions, and assumptions are each described further in explanatory 

text.  These are followed by a prover9 proof (verified by ivy), which shows in a table format how 

the assumptions prove the goal (using proof by contradiction).  The table includes the rationale 

for each step.  The prover9 proof is followed by additional discussion about that proof.
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5.6 Proof #1: Goal source_corresponds_to_executable

The key proof for DDC is to show that, if stage2 (the result of the DDC process) and cA (the 

original compiler-under-test) are equal, then the compiled executable cA and the source code  sA 

exactly correspond.   This  goal  is  easily  represented  by the  following formula  (using  ASCII 

representation) named source_corresponds_to_executable:

(stage2 = cA) -> exactly_correspond(cA, sA, lsA, eArun).

As with all formal proofs in this dissertation, this proof introduces various predicates, functions, 

and assumptions.  Since this first proof is central to the entire dissertation, as each assumption is 

introduced it will be shown how it builds toward the final goal.  This is followed by a prover9 

table (showing how the assumptions prove the final goal) and a brief discussion.

5.6.1 Predicate “=” given two executables

The  predicate  “=”  (equal-to,  aka  equality)  is  part  of  the  goal  statement;  it  compares  two 

executables to determine if they are equal.  It is an infix predicate with this form:

predicate Executable1 = Executable2

For purposes of DDC, two executables are equal if  they have  exactly the same structure and 

values as used by the environment when it runs either executable.  When performing DDC, this 

test for equality must occur in an environment that is trusted to accurately report on the equality 

of two executables (i.e., the environment and program implementing this equality test must not 

have triggers/payloads for the values tested), and the two executables being compared must have 

been acquired in a trustworthy way.

In a traditional operating system with a filesystem, an executable would normally be one or more 

files, where each file would be a stream of zero or more bytes as well as metadata controlling its 

execution (including the set of attributes determining if and how to run the file).  The sequence of 
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bytes must be identical (the same length and at each position the same value), and the metadata 

effecting execution must  have the same effect  in execution when transferred to its  execution 

environment (e.g., the  “execution” flag or equivalent must have the same value so that they are 

both executable).  The “have the same effect” phrase is stated here because differences that are 

not used  by the  environment  during  execution  are  irrelevant.   In  particular,  many operating 

systems record “date written” as part of the metadata, and this would typically not be the same 

between different  compilation runs.   Nevertheless,  as long as those differences do not  effect 

program execution, they do not matter.  Indeed, if the differences are only compared in certain 

ways,  and those relationships are maintained, then they do not matter.   Thus, if  a “makefile” 

compares dates, but only to determine which files came before or later, the specific dates do not 

matter as long as the relationships are maintained.  In practice, it is relatively easy to determine 

what metadata has an effect by examining the source code sA and sP; if the source code does not 

use it (directly or via calls to the environment), then given the other assumptions, the resulting 

stage2 executable from DDC will  not invoke them either.   This is because the DDC process 

(though not the original generation process) is required to not include triggers or payloads that 

affect the execution process (as discussed in section 3.2).

If  the  executables  are  S-expressions12,  the  usual  definition  of  S-expression  equality is  used: 

Atoms are only equal to themselves (so 5=5), NIL is only equal to itself, and lists are equal iff 

they have the same length and each of their elements are equal.  NIL and an empty list are distinct 

if and only if the execution environment can distinguish them.  We presume S-expressions are 

12“S-expression” is short for “symbolic expression”.  It is a convention for representing semi-structured 
data in human-readable textual form, and is used for both code and data in Lisp.  For our purposes, an S-
expression may be an atom (a number, symbol, or special term NIL) or a list; a list contains 0 or more 
ordered S-expressions.  The actual definition is more complex (involving CONS pairs), but this is not 
important for purposes of this dissertation.
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written out as text and read back before use (otherwise there may be complications due to pointer 

equivalence).

Note that equality is a stricter relationship than equivalence.  Two executables may be considered 

equivalent in an environment if they always produce equal outputs given equal inputs, even if 

their internal structure and/or values are different.  Two executables that are equal are always 

equivalent, but equivalent executables need not be equal.    Unfortunately, determining if two 

executables E1 and E2 are equivalent is undecidable in the general case.  This is because if there 

was any decision procedure D capable of determining equivalence, it could be invoked by E1 and 

E2.  If found equivalent they could perform different operations, and if found different they could 

act the same [Cohen1984, part 4].  Even in very special cases it is often difficult to determine the 

equivalence  of  two  unequal  executables.   Instead  of  focusing  on  the  difficult-to-determine 

equivalence relationship, we will instead focus on the stricter equality relationship, which is a far 

easier and more practical test to perform.  Proof #2 and proof #3 will show that under certain 

common conditions, two executables will be equal (not just equivalent), so limiting proof #1 to 

equality does not significantly limit its practical utility.

5.6.2 Predicate exactly_correspond

The  goal  statement  makes  no  sense  unless  the  predicate  “exactly_correspond”  is  defined. 

Predicate “exactly_correspond” has the following parameters:

predicate exactly_correspond(Executable, Source, Lang, RunOn)

This predicate is defined to be true if, and only if, the Executable exactly implements source code 

Source when (1) that Source is interpreted as language Lang and (2) the Executable is run on 

environment RunOn.  For this predicate to be true, the Executable must not do anything more, 

anything  less,  or  anything  different  than  what  is  specified  by  Source  (when  interpreted  as 
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language Lang).  Note that this does not require that Source is a perfect implementation of some 

abstractly-defined  language.   In  section  5.6.8 we  will  define  a  condition  that  will  make  the 

predicate exactly_correspond true.

5.6.3 Predicate accurately_translates

A related predicate that must be defined is accurately_translates, with these parameters:

predicate accurately_translates(Compiler, Lang, Source, EnvEffects,
RunOn, Target)

This predicate is true if and only if the Compiler (an executable) correctly implements language 

Lang when compiling a particular Source and given input EnvEffects (from the environment), 

when it  is  run  on environment  RunOn and targeting environment  Target.   The Target  is  the 

environment that the compiler generates code for (which need not be the same as the environment 

the compiler runs in).  The EnvEffects parameter models variations in timing and inputs from the 

environment, and will be explained further in the definition of the “compile” function in section 

5.6.5.

5.6.4 Assumption cT_compiles_sP

We must assume that the trusted compiler cT is a compiler for language lsP (the language used by 

source code sP), that cT will accurately translate sP when run in environment e1, and that cT targets 

(generates code for) environment e2.  This assumption is named cT_compiles_sP:

all EnvEffects accurately_translates(cT, lsP, sP, EnvEffects, e1, e2).

In short, cT has to accurately implement the language lsP, at least sufficiently well to compile sP. 

Otherwise, cT can’t be used to compile  sP.  For example, if  sP was written in C++, then a Java 

compiler cannot be directly used as the trusted compiler cT.  Compiler cT must not have triggers or 

payloads that activate when compiling sP.  Neither e1=e2 nor e1≠e2 is asserted; thus, e1 may but 
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need not be the same as e2.  The “all” in the formal statement is optional, but is included here for 

emphasis.

5.6.4.1 Implications for the language

This proof could have been created without mentioning languages at all; the formal model could 

simply require that (1) cT will accurately translate sP when run in environment e1 and that (2) cT 

targets (generates code for) environment e2.  However, it would have been easy to misunderstand 

the proof results.  For example, without noting the different languages, the proof could be easily 

misunderstood  as  requiring  that  all  compilers  implement  the  same  language.   Noting  the 

languages  clarifies  that  they  can be  different,  and  clarifies  that  the  languages  should  be 

considered when performing DDC.  Including the languages in the proofs also provides a check 

on the proof that is similar to type-checking: The proof requires that in each compilation, the 

compiler used must support the language of the source code used as input.

The  language  lsP  must include  all of  the  syntactic  and  semantic  requirements  necessary to 

correctly  interpret  sP.   It  may,  but  need  not,  include  additional  requirements  not  required  to 

interpret sP (as long as they do not interfere with interpreting sP).  In particular, lsP need not be the 

same as the language documented in an official (e.g., standardized) language specification, even 

if one exists.  For example:

• lsP may omit any requirements in an official specification, as long as the source code 

does not require them.  So an official specification may include support for threading or 

floating point numbers, but if they are not needed when compiling the source code, then 

they can be safely omitted from lsP.
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• lsP may impose additional requirements that are explicitly left undefined in an official 

specification.   For  example,  if  an  official  language  specification  permits  certain 

operations to be done in an arbitrary order (such as right-to-left or left-to-right evaluation 

of  function  parameters),  but  the  given  source  code  requires  a  particular  order  of 

evaluation,  then  lsP must  add  the  additional  ordering  requirement.   Such  additional 

requirements, if any, should be included in the source code’s documentation.  It is usually 

better if the source code only requires what an official language specification guarantees, 

because there are likely to be more alternative compilers.   But it’s  quite common for 

compiler sources to make assumptions that are not guaranteed by official specifications, 

and DDC can still be used in such cases.

• lsP may impose additional length or size requirements than those imposed by an official 

specification.   For  example,  if  the  source code requires  support  for  certain  identifier 

lengths, depth of parentheses, or size of result, then lsP includes those requirements.

• If lsP includes ambiguous requirements, or requirements that are not fully defined, then 

those ambiguities or inadequate definitions must not matter when compiling the source 

code.

• lsP  may  add  various  extensions  as  requirements  that  are  not  part  of  the  official 

specification.  Unsurprisingly, if the source code requires extensions, then the compiler 

used to compile that source code must somehow support those extensions.

• lsP could even directly contravene an official specification on certain issues; what matters 

is what is required to correctly compile the source code.

The language lsP need not  be formally specified,  nor must  it  exist  as a single document.   If 

expressed, it is likely to take the form of a reference to an existing language standard combined 
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with a description of the permitted omissions, the changes, and the additions.  For proof purposes, 

the language specification need not be written at all; all that is required is that the compilers and 

source code conform if it were written.  Of course, if the specification is not written, it is difficult 

to check for compliance to it.

The “language” may even be a set of languages, including a language for selecting which other 

language to use (e.g., the file extension conventions used for selecting between languages).  For 

example, GNAT (whose name is no longer an acronym) is an Ada compiler whose front-end is 

written in Ada, but the rest of the compiler is written in C.  A trusted compiler suite for GNAT 

would need to be able to compile both Ada and C, as well as correctly process the file extension 

conventions used by the GNAT source code to differentiate between languages.

5.6.4.2 Implications for the trusted compiler and its environment

Compiler  cT need  not  implement  a  whole  language,  as  defined  by  an  official  language 

specification—it only needs to implement what is required to compile sP.  So cT may be a very 

limited compiler.  In some cases, some compiler cQ may only be suitable for use as a part of 

trusted compiler cT if the source code goes through a preprocessor, or if the resulting executable 

goes  through  a  postprocessor.   For  example,  a  preprocessor  may  be  needed  to  convert 

nonstandard constructs into constructs that cQ can handle, or perhaps cQ implements a different 

specification.  In this case, the compiler cT is the combination of the preprocessor and cQ.  In 

theory there’s no limit to how many steps can be chained together to construct cT, but since they 

are all part of the trusted compiler they must be sufficiently trustworthy to meet the assumptions 

of the proof.  In practice, these steps (including the use of preprocessors and postprocessors) 

should be limited, to limit the number and size of tools that are granted such trust.
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Note that the trusted compiler (cT) and the environment it executes on (e1) do  not need to be 

completely defect-free  nor  non-malicious.   This  is  important,  since defect-free compilers and 

environments  are  rare,  and  ensuring  absolute  non-maliciousness  is  difficult.   Compiler  cT or 

environment e1 may be full of bugs, and/or full of triggers and payloads for inserting corrupted 

code into other programs (including itself).  We merely require that cT, when executed on e1, 

perform an accurate translation when it compiles exactly one program’s source code:  sP.  So cT 

may have defects – but they must not affect compiling  sP.  Similarly, cT may have triggers and 

payloads to create maliciously corrupted executable(s) – but cT must not have triggers for sP, or if 

it does, its payloads must not affect the results.  Various real-world actions, such spot-checking or 

formally verifying the compiler executable cT, can increase confidence that this assumption is true 

in  the  real  world.   In  some  cases,  a  secret  compiler  (where  reading/writing  its  source, 

reading/writing its executable, and using it as a service is expressly limited to very few trusted 

people)  may be  useful  as  the  trusted compiler;  via  DDC,  it  can be  used  to  greatly increase 

confidence in the publicly-available compiler.

It is worth noting that one of these potential failures is memory failure.  Recent field studies have 

found that dynamic random access memory (DRAM) error rates are orders of magnitude higher 

than previously reported, and memory errors are dominated by hard errors (which corrupt bits in 

a repeatable manner) rather than soft errors [Schroeder2009].  The risk of such failures can be 

greatly reduced by using memory test  programs to check the environment before performing 

DDC, and by using memory systems that include error correcting code(s) (ECC).

There is a subtlety in the formal model that is normally handled correctly by compiler users, but 

is noted here for completeness.  That subtlety is that when performing DDC, we typically need to 

have different  build  instructions  (as  executed by the  “real”  compilers  and environment)  than 
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when sP and sA were originally compiled.  At first glance this appears to be a problem, because in 

the formal model of DDC, the source code sP and sA that is used in DDC must be exactly the same 

as the source code used in its  original  purported creation process.   Yet  the source code may 

include build instructions, indeed, nontrivial compilers often include complex build instructions 

as part of their source code. But if the build instructions are part of the source code, and the build 

instructions invoke a compiler  other than cT,  how can trusted compiler  cT be invoked during 

DDC? Similarly,  if the environments e1 or e2 are different than the environments eP and eA 

(respectively), and/or if the option flags are different between compilers, how are these changes 

modeled? And similarly, if the build systems are substantially different (e.g., there are different 

build languages), how can we accurately model translating the build language?  One solution is to 

consider the build instructions as not included in the source code, but this is grossly unrealistic for 

larger compilers with complex build instructions.

A  better  alternative  that  completely  models  these  circumstances  is  to  consider  the  build 

instructions to be part of the source code, and also consider the trusted compiler cT to be some 

“real” compiler cT′ plus a preprocessor.  This preprocessor is trusted to correctly change the build 

instructions in a way that meets this assumption, e.g., so that the compilation process invokes cT′ 

instead  of  the  original  compilation  process.   In  practice,  this  preprocessor  is  likely  to  be 

implemented  by  a  human  who  modifies  the  build  process  (e.g.,  by  setting  an  environment 

variable, modifying a makefile,  using a different set of arguments when invoking “make”, or 

hand-translating the build instructions to a different build language).  This step is so “obvious” to 

most compiler users that it would not normally be remarked on.  Often this transformation is so 

simple that it is easy to forget that it even occurred.  Nevertheless, by acknowledging this step, 

the formal model of DDC can accurately model what actually occurs.   Since it is part of the 
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trusted compiler cT, this preprocessor step must be trusted to not include triggers and payloads 

that would effect the DDC compilation.

In general, the internal structure of trusted compiler cT is irrelevant for the proof.  Many problems 

in applying DDC (including modeling necessary changes to the build process as noted above) can 

be resolved by combining various processes (including preprocessors and/or postprocessors) as 

necessary to produce the final trusted compiler cT.   The only requirement is  that  all  required 

assumptions (including the definitions) are met.

5.6.5 Function compile

Unsurprisingly, we must model compiling a program.  We will model compiling as a function that 

returns an executable (a kind of data)13 and has the following parameters:

function compile(Source, Compiler, EnvEffects, RunOn, Target)

This  represents  compiling  Source  with  the  Compiler,  running  the  compiler  in  environment 

RunOn, and instructing the compiler to generate an executable for the target environment Target. 

Note that Target may or may not be the same as RunOn.

The parameter “EnvEffects” overcomes an issue in typical  mathematical notation.  In typical 

mathematical notation, a function provided with the same inputs will always produce the same 

outputs.  Without the “EnvEffects” parameter, this would imply that a given compiler executable, 

when given the same Source, RunOn, and Target, will always produce exactly the same output 

(i.e.,  that  it  is  deterministic).   Unfortunately,  this  is  not always true for  all  compilers.   Some 

compilers  will produce different outputs at  different times,  even when given the same source 

code.  The reason is that environments can provide “effects”, which are essentially inputs to the 

13As noted in section 5.2, the FOL notation used in this paper does not have a built-in mechanism for 
notating types such as “data” or “executable”.  As explained in section 5.1.1, types are noted to make the 
proof easier to understand, even though they are not directly used in the proof’s formal notation.

69



compilation process that affect the  outcome but are not part of the source code.  Examples of 

effects that can cause non-determinism are:

• Random number  generators.   A compiler’s  code  generator  or  optimizer  might  have 

multiple  alternatives,  and instead  of  picking one deterministically,  it  might  call  on  a 

random number  generator  to  make  that  determination.   If  the  environment  provides 

different random numbers each time it is run, the results might be different.  Note that 

under certain circumstances the GCC compiler will use a random number generator, but 

GCC also  allows  users  to  select  a  seed;  if  a  seed  is  selected,  then  the  sequence  is 

deterministic and not random at all.

• Heap allocation address values.  Many systems today randomize addresses (e.g., of the 

heap or stack),  in an attempt  to counter  attackers by making certain kinds of  attacks 

harder to perform.  However, a compiler’s output may be changed by different address 

values.   For  example,  some  Java  compilers  use  heap  allocation  addresses  for  hash 

calculation, and then use those hash values to control the sort order of some output.  As a 

result,  the output ordering may be different between executions, even given the same 

source code, execution environment, and target environment.

• Execution  order  due  to  threading.   Some  compilers  are  multi-threaded  and  are  only 

loosely  ordered.   The  environment  may  execute  the  threads  in  a  different  order  in 

different executions, and depending on the compiler, this may affect the output.

Thus, EnvEffects models the inputs from the environment which may vary between executions 

while still conforming to the language definition as used by Source.

As noted earlier, libraries may be modeled by considering them as part of the compiler (if they 

are executed) or part of the source (if they are used as input data but not executed).
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In some discussions of DDC, we will occasionally use the simpler definition:

function compile(Source, Compiler)

Of course, this definition cannot represent the different environments (RunOn and Target), nor 

can it represent the possibility that some programs are non-deterministic (which is modeled by 

EnvEffects),  but  in  some  situations  these  can  be  inferred  from context.   In  some  cases  the 

function name “c” is used as an abbreviation for “compile”.

5.6.6 Assumption sP_compiles_sA

We must  assume that the source code  sP (written in language lsP) defines a compiler  that,  if 

accurately compiled, would be suitable for compiling sA.  To formally state this, we will assert 

that  if  we  have  some  GoodCompilerLangP  with  the  right  properties,  then  using 

GoodCompilerLangP on sP will produce a suitable executable:

accurately_translates( GoodCompilerLangP, lsP, sP,
EnvEffectsMakeP, ExecEnv, TargetEnv) ->

accurately_translates(
compile( sP, GoodCompilerLangP, EnvEffectsMakeP,

ExecEnv, TargetEnv),
lsA, sA, EnvEffectsP, TargetEnv, eArun).

Strictly speaking, the name “sP_compiles_sA” is misleading; there is no guarantee that source 

code can be directly executed.  However, more-accurate names14 tend to be very long and thus 

hard to read.

Note  that  by  combining  this  assumption  (sP_compiles_sA)  and  the  previous  assumption 

cT_compiles_sP,  we  can  determine  a  new  derived  result  which  we  will  name 

sP_compiles_sA_result:

accurately_translates( compile(sP, cT, EnvEffectsMakeP, e1, e2),
lsA, sA, EnvEffectsP, e2, eArun).

14 Such as “sP_when_accurately_compiled_compiles_sA”
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Note that EnvEffectsMakeP and EnvEffectsP are not bound to any particular value, so they have 

an implicit  “for  all” around them.   Since their  actual  values do not  matter,  to simplify these 

expressions they (and similar dummy values) can be replaced with arbitrary capital letters:

accurately_translates(compile(sP, cT, A, e1, e2), lsA, sA, B, e2, eArun).

Note that sP (when compiled) does not need to implement the whole language sA was written in, as 

defined  by some  official  language  standard.   Instead,  a  compiled  form of  sP only  needs  to 

implement the syntax and semantics of the language that  sA requires.  This language, lsA,  must 

include all of the syntactic and semantic requirements necessary to correctly interpret sA; it may, 

but need not, include additional requirements not required to interpret sA.  This is fundamentally 

the same kind of issue as described in section 5.6.4 (with sA, lsA, and the compiled sP analogous 

to sP,, lsP, and cT), and the same explanation regarding language applies.

5.6.7 Definition definition_stage1

We must now begin to define the DDC process itself in this formal notation.  As shown in figure 

4, the executable “stage1” is created by compiling  sP using cT, running on environment e1 and 

targeting environment e2.  We will name this definition_stage1, and it is formally notated as:

stage1 = compile(sP, cT, e1effects, e1, e2).

Combining  this  with  sP_compiles_sA_result,  we  find  this  result  which  we  will  name  as 

definition_stage1_result1:

accurately_translates(stage1, lsA, sA, A, e2, eArun).

5.6.8 Definition define_exactly_correspond

There  is  a  key  relationship  between  the  predicates  “exactly_correspond”  and 

“accurately_translates” that has not yet been expressed, which also provides insight into what it 

means when a source and executable exactly correspond.  Fundamentally, if some Source (written 
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in  language  Lang)  is  compiled  by a  compiler  that  accurately translates  it,  then  the  resulting 

executable  exactly  corresponds  to  the  original  Source.   This  relationship  is  named 

define_exactly_correspond,  and  is  so  central  to  the  notion  of  “exactly_correspond”  that  it 

essentially defines it.  This is expressed as:

accurately_translates(Compiler, Lang, Source, EnvEffects, ExecEnv, TargetEnv)
->

exactly_correspond(compile(Source, Compiler, EnvEffects, ExecEnv, TargetEnv),
Source, Lang, TargetEnv).

Combining  this  with  the  previous  result,  we  can  now determine  a  result  that  we  will  name 

define_exactly_corresponds_result1:

exactly_correspond(compile(sA, stage1, A, e2, eArun), sA, lsA, eArun).

5.6.9 Definition definition_stage2

We now introduce a formal model for how the DDC process generates stage2, which compiles 

source sA using the executable stage1 and targets environment eArun:

stage2 = compile(sA, stage1, e2effects, e2, eArun).

Using the previous result, we can now determine definition_stage2_result1:

exactly_correspond(stage2, sA, lsA, eArun).

5.6.10 Goal source_corresponds_to_executable

We can now prove our goal, source_corresponds_to_executable.  Recall that this goal is:

(stage2 = cA) -> exactly_correspond(cA, sA, lsA, eArun).

But we already know, per definition_stage2_result1, that:

exactly_correspond(stage2, sA, lsA, eArun).

If stage2 is exactly the same as cA (the left side of the goal’s implication), then we can replace 

stage2 with cA, producing:

exactly_correspond(cA, sA, lsA, eArun).

QED.
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5.6.11 Prover9 proof of source_corresponds_to_executable

Table 2 presents the proof found by prover9 (see section 5.3 for more on the rationale).

Table 2: Proof #1 (source_corresponds_to_executable) in prover9 format
# Formula Rationale

1 accurately_translates(A,B,C,D,E,F) -> 
exactly_correspond(compile(C,A,D,E,F),C,B,F) 

Assumption 
define_exactly_correspond

2 (all A accurately_translates(cT,lsP,sP,A,e1,e2)) Assumption cT_compiles_sP

3
accurately_translates(A,lsP,sP,B,C,D) -> 
accurately_translates(compile(sP,A,B,C,D),
lsA,sA,E,D,eArun) 

Assumption sP_compiles_sA

4 stage2 = cA -> exactly_correspond(cA,sA,lsA,eArun) Goal source_corresponds_to_
executable

5 -accurately_translates(A,B,C,D,E,F) | 
exactly_correspond(compile(C,A,D,E,F),C,B,F) Clausify 1

6 accurately_translates(cT,lsP,sP,A,e1,e2) Clausify 2

7
-accurately_translates(A,lsP,sP,B,C,D) | 
accurately_translates(compile(sP,A,B,C,D),
lsA,sA,E,D,eArun) 

Clausify 3

8 stage1 = compile(sP,cT,e1effects,e1,e2) Assumption definition_stage1
9 compile(sP,cT,e1effects,e1,e2) = stage1 Copy 8, flip
10 stage2 = compile(sA,stage1,e2effects,e2,eArun) Assumption definition_stage2
11 compile(sA,stage1,e2effects,e2,eArun) = stage2 Copy 10, flip
12 cA = stage2 Deny 4
13 -exactly_correspond(cA,sA,lsA,eArun) Deny 4
14 -exactly_correspond(stage2,sA,lsA,eArun) Para 12 13

15 accurately_translates(compile(sP,cT,A,e1,e2),
lsA,sA,B,e2,eArun) Resolve 7 6

16 accurately_translates(stage1,lsA,sA,A,e2,eArun) Para 9 15

17 exactly_correspond(compile(sA,stage1,A,e2,eArun),
sA,lsA,eArun) Resolve 5 16

18 exactly_correspond(stage2,sA,lsA,eArun) Para 11 17
19 $F Resolve 18 14
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5.6.12 Discussion of proof #1

The  existence  of  stage1  and  stage2  implies  termination  of  the  compilation  processes  that 

produced them.  This doesn’t limit the proof’s utility in the real world; a compilation process that 

never finished would not  be considered useful,  and would certainly be noticed.   Termination 

implies that sA and sP are computable and implementable, which in turn implies that the subset of 

languages lsA and lsP correspondingly used by sA and sP are also computable and implementable. 

Thus, sA cannot call impossible functions like “return_last_digit_of_pi()”.  The languages lsP and 

lsA may have many additional capabilities, but for DDC only the proof assumptions are required.

Reviewers often search to see if a proof works given “null” or “absurdly small” cases.  Oddly 

enough, the proof is still correct in these cases.  It is theoretically possible that one or more of the 

compilers could be a one-byte value, a one-bit value, or even null, if the underlying environment 

implemented those values according to the proof assumptions.  For example, an environment 

could theoretically have a built-in “compile” instruction, or implement a “compile” function if it 

receives an empty sequence.  This is hypothetical; real environments are very unlikely to work 

this way.  However, there’s no need to prevent this possibility, so the proof permits it.

The goal statement compares for equality between stage2 and cA.  As noted above, this requires 

that equality be correctly implemented; if the equality-checking program is itself subverted, this 

proof would not apply, so the equality-checking program and the environment it runs on must not 

be subverted.  Similarly, the values stage2 and cA that are compared must be acquired in a trusted 

manner; if the programs or environment used to copy them are subverted, then again, the proof 

will not apply (because the values the proof applies to might not be what is being tested).
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Note that the converse of the proof #1’s goal does not necessarily hold.  The converse is:

exactly_correspond(cA,sA,lsA,eArun) -> (stage2 = cA)

There are many reasons the converse need not be true.  For example, executable cA might have 

been modified by adding extra unused information at its end, or had “no-operation” statements 

inserted into it that do not change the outputs it produces.  Indeed, cA could have been produced 

by compiling sA using a different but trustworthy compiler and environment.  In all these cases, cA 

could exactly correspond to  sA, even though stage2 is not equal to cA.  But there  is a common 

circumstance where stage2 and cA must be equal; showing this is true is the focus of proof #2.

5.7 Proof #2: Goal always_equal

The first proof (source_corresponds_to_executable) shows that if cA and stage2 are equal, then cA 

and sA exactly correspond.  However, this first proof is not practically useful if cA and stage2 are 

not normally equal.  So we will next prove that, under “normal conditions”, cA and stage2 are in 

fact always equal.  “Normal conditions” is expressed more formally below, but in particular, this 

includes the presumption that the compiler executables have not been tampered with (i.e., that the 

compiler executables correspond to their source code).  This proof goal is named “always_equal”, 

and is simply:

cA = stage2.

This second proof requires many more assumptions than the previous proof (9 instead of 5).  It 

reuses 4 previous assumptions: definition_stage1, definition_stage2, define_exactly_correspond, 

and  cT_compiles_sP.   The  new  assumptions  are  definition_cA,  cP_corresponds_to_sP, 

define_compile, sP_portable_and_deterministic, and define_determinism, as defined below.  We 

will avoid making any assumptions about cGP, a possible “grandparent” compiler, since there may 

not be a grandparent compiler.  Proof #3, to follow, will examine the common case when there is 

a grandparent compiler.
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Interestingly, we do not need the assumption sP_compiles_sA for this proof.  The assumption 

definition_cA requires, as a side-effect, that sP terminate when it compiles sA. If sP terminates but 

fails to compile  sA, the results will still be equal; in this case the processes will produce equal 

error messages, which is probably not useful but it does not invalidate the proof.  If sP terminates 

and successfully compiles  sA, then again, the results will be equal if this section’s assumptions 

hold.  This would be true even if sP has one or more defects that affect compiling sA; in such a 

case, if all  the assumptions of proof #2 hold, then compiler-under-test cA and the DDC result 

stage2 will be identical and have the same defects.  Again, this does not invalidate DDC; the 

purpose of DDC is to determine if source and executable correspond, not to prevent all possible 

defects.

In this second proof, the predicates, functions, and assumptions will now be presented, along with 

their ramifications.  This will be followed by the complete prover9 proof and a discussion.

5.7.1 Reused definitions define_exactly_correspond, 
definition_stage1, and definition_stage2

We will reuse several definitions.  Here is definition define_exactly_correspond:

accurately_translates(Compiler, Lang, Source, EnvEffects, ExecEnv, 
TargetEnv) -> 

exactly_correspond(compile(Source, Compiler, EnvEffects, ExecEnv, 
TargetEnv), Source, Lang, TargetEnv).

Definition definition_stage1:

stage1 = compile(sP, cT, e1effects, e1, e2).

Definition definition_stage2:

stage2 = compile(sA, stage1, e2effects, e2, eArun).
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5.7.2 Assumption cT_compiles_sP

We will also reuse assumption cT_compiles_sP from section 5.6.4:

all EnvEffects accurately_translates(cT, lsP, sP, EnvEffects, e1, e2).

5.7.3 Predicate deterministic_and_portable

We define a new predicate:

predicate deterministic_and_portable(Source, Language, Input)

This predicate is defined to be true if, and only if, the given Source (when compiled by a correct 

compiler for Language) is both:

• deterministic (when correctly compiled for an environment, and run on that environment, 

it will always produce the same specific output given the same input Input), and

• portable (the above is true across the environments used by DDC and the claimed origin).

A deterministic and portable executable always produces the same outputs, given the same inputs, 

in various environments; in this case, we only care if it is deterministic and portable for a given 

environment, and only for a specific input (Input).

A compiler need not be deterministic.  For example, when there are optimization alternatives, a 

compiler  could  call  a  random number  generator  in  the  environment,  and  use  that  value  to 

determine which alternative to choose.

In practice,  many compilers are deterministic,  or  can be executed in a way that  makes them 

deterministic, because it is much more difficult to test non-deterministic compilers.  Indeed, some 

compilers (such as GCC) use self-regeneration as a self-test—and such tests require determinism. 

For example, GCC’s C++ compiler includes the ability to control the random number seed used 

during compilation, specifically to cause its non-deterministic behavior to become deterministic. 
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One  exception  is  embedded  timestamps:  Some  object  code  formats  embed  compilation 

timestamps in the file.  If timestamps are only stored in intermediate formats, and not a final 

format, an easy solution is to only compare the final results (see section 8.6).

Many  real-world  languages  include  intentionally  non-portable  constructs  that  provide  direct 

access  to the  underlying environment  and/or  use compiler  extensions  not  supported by other 

compilers.   For  example,  languages  may  provide  nonstandard  methods  for  opening  files. 

However, we must compile the same program using different compilers, in potentially different 

environments.   Thus,  we  must  avoid  such  constructs  for  DDC,  or  add  those  additional 

requirements to the language specification and ensure that all the implementations used in DDC 

and the claimed origin of the compiler support them as necessary.

5.7.4 Function run

Previously we  could  treat  compiling  as  a  “black  box”,  but  for  this  proof  more  detail  about 

compilation is needed.  In particular, we must model executing a program.  Thus:

function run(Executable, Input, EnvEffects, Environment)

is  a  function that  returns data.   This data (the output)  is  the result  of  running Executable in 

Environment, giving it Input and the various environmental effects EnvEffects.  The parameter 

“EnvEffects” models whatever the language allows the environment to vary that could have an 

effect on the results of running Executable, such as random number generator values or thread 

scheduling.

The results include standard out, standard error, and any files (file names, locations, and contents) 

generated or modified by its execution.  Since different runs could have different environmental 

effects  as  input  (e.g.,  the  random  number  generator  from  the  environment  might  produce 
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something different), it is possible that running the same executable with the same Input could 

produce different results.

5.7.5 Function converttext

Function  converttext  models  an  unfortunate  complicating  issue  in  the  real  world:  Different 

environments may encode text in different ways.  Function

function converttext(Data, Environment1, Environment2)

takes Data, where all text is in the standard text encoding of Environment1, and returns the same 

Data but with all text converted to the standard text encoding of Environment2.

In  particular,  a  new  line  may  be  encoded  differently  by  different  environments.   Common 

conventions, and some systems that use those conventions, include:

• Linefeed (#x0A):  Unix, GNU/Linux, Mac OS X, Multics.

• Carriage Return (#x0D): Apple II Disk Operating System (DOS) and Professional Disk 

Operating System (ProDOS), Mac OS version 9 and earlier.

• Carriage return + Linefeed (#x0D #x0A): Control Program for Microcomputers (CP/M), 

Microsoft Disk Operating System (MS-DOS), Microsoft Windows.

• Newline NEL (#x85): IBM System/390 operating-system (OS/390) [Malaika2001].

Similarly, not all computer systems encode text characters the same way.  They may use (for 

example) ASCII, 8-bit (UCS)/Unicode Transformation Format UTF-815, UTF-16 (which may be 

little-endian or big-endian), a locale-specific encoding, or even EBCDIC.

Since we will later compare values for exact equality, modeling these differences is necessary.

15UTF-8 is short for “8-bit UCS/Unicode Transformation Format”, where UCS is short for “Universal 
Character set”.  UTF-16 is short for “16-bit UCS/Unicode Transformation Format”.  EBCDIC is an 
abbreviation for “Extended Binary Coded Decimal Interchange Code”.  As noted earlier, ASCII is short for 
“American Standard Code for Information Interchange”.  These terms are normally used only as acronyms.
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5.7.6 Function extract

Function extract accepts data, and returns a subset of that data:

function extract(Data)

More specifically, function extract() extracts  only the executable produced by a compiler, and 

silently  throws  away the  rest  (e.g.,  warning  and  error  reports  made  during  the  compilation 

process).  A compilation process runs a compiler, and a compiler produces many outputs – but we 

only want the data that will be later used for execution.  In a  typical compilation environment, 

extract() will produce just the generated executable files, and not outputs to standard out, standard 

error, and/or log files.

5.7.7 Function retarget

Function retarget accepts source and target, and returns possibly modified source:

function retarget(Source, Target)

Retarget represents any modifications to the source code Source that are necessary to change it so 

it will  compile to run on the target environment Target.   In many circumstances, Source will 

include various flags to the compiler that determine what environment the compiled executable 

will  run on.   If  a  different  execution environment is  to be used,  the Source may need to be 

modified.  If no such modifications are needed, retarget simply returns Source.

5.7.8 Assumption sP_portable_and_deterministic

We will assume that source sP, when compiled, describes a portable and deterministic program, 

when used to compile sA (once it is retargeted to generate code for eArun):

portable_and_deterministic(sP, lsP, retarget(sA, eArun)).
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This means that:

• Source  sP must avoid all non-portable capabilities of language lsP, or use them only in 

ways that will not affect the output of the program when compiling sA.. For example, if a 

“+” operator is used in the source code, then the language must include this operator, the 

language  must  provide  the  semantics  required  by  the  source  code  (e.g.,  “add  two 

integers”  if  sP requires  this  meaning),  and the  language must  require  support  for  the 

domain of values used as inputs to the operator when processing Input.   As noted in 

section 5.6.4.1, the language noted here is not necessarily an official standard; it might, 

for example, be a subset and/or superset of a official standard.

• Source sP may use constructs that are individually non-deterministic (such as threads with 

non-deterministic scheduling), but if it does it must use mechanisms to make to ensure 

that the output will be the same on each execution given the same input (for example, it 

could use locks to ensure that thread scheduling variation does not cause variation in the 

results).  In some cases, setting the random number seed and algorithm for “randomness” 

may be necessary to ensure determinism.

Note that we do  not require that cT or the grandparent compiler cGP (if it exists) be portable or 

deterministic.   They  could be portable and/or deterministic,  and often will  be, but this  is  not 

necessary.

It is possible that some constructs in sP are non-deterministic or non-portable; this is acceptable as 

long as they do not affect the use of sP to compile the retargeted sA.  However, even if sP includes 

non-deterministic or non-portable constructs, definition_stage1 (see section  5.7.1) still requires 

that the trusted compiler cT must be able to compile sP.
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5.7.9 Definition define_portable_and_deterministic

Under certain conditions, the same source code can be compiled by different compilers, and when 

the different executables are run with the same inputs, they must produce the same outputs.  More 

precisely, if the source code uses only the portable and deterministic capabilities of a language 

when properly compiled and run to process a specific input Input, then given two executables that 

exactly correspond to that same source code (possibly running in different environments), then 

those executables—when given the same input Input—will produce the same output (other than 

text format differences).  This is expressed as follows:

 ( portable_and_deterministic(Source, Language, Input) &
   exactly_correspond(Executable1, Source, Language, Environment1) &
   exactly_correspond(Executable2, Source, Language, Environment2)) ->
     ( converttext(run(Executable1, Input, EnvEffects1, Environment1),
                   Environment1, Target) =
       converttext(run(Executable2, Input, EnvEffects2, Environment2),
                   Environment2, Target))

This is perhaps best explained by a sequence of two examples.  Let us first consider this simple C 

program, which computes 2+2 and prints the result:

#include <stdio.h>
main() {

printf("%d\n", 2+2);
}

Now imagine two different properly-working C compilers given this code.  The two executables 

produced by the two different C compilers will almost certainly be different.   However, running 

these two executables on their respective environments  must produce the same result “4” (once 

text encoding is taken into account).

Now consider this program; it reads a number, adds one to it, and prints the result:

#include <stdio.h>
main() {

int x;
scanf("%d", &x);
x++;
printf("%d\n", x);

}
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Again, after using different properly-working C compilers,  the two executables produced will 

almost certainly be different.  Will running the two executables always produce the same outputs? 

It turns out that this depends on the inputs.  Running these two executables on their respective 

environments, with the same input “5”, must produce the same result “6” (once text encoding is 

taken into account),  because the language definition requires that  implementations be able to 

correctly read in 5, add one (producing 6), and be able to print it.

However, this is  not necessarily true with a different input.  The C language specification only 

guarantees  that  an  “int”  can  store  and  process  integers  within  the  range  of  a  16-bit  twos-

complement signed integer [ISO1999, section 5.2.4.2.1].  Thus, if 2147483648 (231) is provided 

as input, we cannot be certain that the executables will do the same thing.  It would be quite 

possible  for  the  different  executables  to  produce  different  results  in  such  cases,  because 

processing such input is not within the portable range defined by the language.

In this particular example, we could change to another language which required this particular 

input to be processed identically (e.g., the language could be “Standard C, but int must be at least 

64 bits long”).  In practice, many language specifications include limits on what is portable and 

deterministic,  and  the  inputs  must  not  exceed  those  limits  for  the  result  to  be  portable  and 

deterministic.

5.7.10 Assumption cP_corresponds_to_sP

How was compiler-under-test cA created?  The putative origin of cA is that it was compiled by 

compiler cP, and that cP’s executable exactly corresponds to source sP.  For the moment, we will 

simply assume this, as this is true for the benign case we are considering in proof #2:

exactly_correspond(cP, sP, lsP, eA).
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In many cases cP will have been created by compiling  sP using some grandparent compiler cGP. 

Proof #3 will  show that  this assumption (cP_corresponds_to_sP) can be proven given certain 

other plausible assumptions, including the existence of a grandparent compiler.   However, by 

making this  a  simple  assumption in  proof #2,  proof #2 is  more general.   For  example,  it  is 

possible that cP was created by hand-translating sP into an executable; in this case, there may be 

no executable that is the grandparent compiler (since a human acted as the grandparent compiler), 

yet it may still be possible to accept this assumption.

5.7.11 Definition define_compile

In the previous proof we had simply accepted “compile” as a function that produced data:

compile(Source, Compiler, EnvEffects, RunOn, Target)

This  represents  compiling  Source  with  the  Compiler,  running  it  in  environment  RunOn,  but 

targeting the result for environment Target.

However, for this proof, more detail about the compilation process is needed, so the compilation 

process will now be modeled using more primitive functions:

compile(Source, Compiler, EnvEffects, RunOn, Target) =
   extract(converttext(run(Compiler, retarget(Source, Target),
           EnvEffects, RunOn), RunOn, Target)).

This is easier to explain by beginning on the right-hand-side, going from the inside expressions 

out.  First, the Source is retargeted so that it will compile for environment Target (this typically 

involves changing compiler flags so that they will specify the new target).  Then run the Compiler 

on the environment RunOn with the retargeted Source code as input; note that if Compiler is a 

non-deterministic compiler, the environmental EnvEffects may have an effect on the results.  The 

output  will  probably include text results  (such as warnings, errors,  and possibly the resulting 

executable depending on the kind of  compiler  it  is).   This text  is  then converted to Target’s 
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standard text format.  Finally, the portions of the compilation results that can be run later are 

extracted; the rest of the material (such as warning text) is thrown away.

In practice, converttext only needs to be applied to text that will be extracted.  If it will be thrown 

away, then there’s no need to actually perform the conversion.  But this is merely an optimization, 

and not necessary for the proof; it is easier to model as shown above.

5.7.12 Definition definition_cA

How was compiler-under-test cA generated?  Putatively it was generated by compiling source sA, 

using compiler cP.  This is easily modeled, in a manner similar to stage1 and stage2:

cA = compile(sA, cP, eAeffects, eA, eArun).

It’s quite possible that this assumption is not true, e.g., perhaps the executable of the compiler-

under-test  was  recently  replaced  by  a  corrupt  executable  (such  as  a  maliciously  corrupted 

executable).   But  for  proof #2,  we are considering what  happens in the benign circumstance 

(where the putative origins are true), to show that a benign environment must produce a match.

5.7.13 Goal always_equal

Recall that the goal is to prove, given the preceding assumptions:

cA = stage2.

5.7.14 Prover9 proof of always_equal

Table 3 presents the proof found by prover9.
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Table 3: Proof #2 (always_equal) in prover9 format
# Formula Rationale

1
portable_and_deterministic(A,B,C) & exactly_correspond(D,A,B,E) & 
exactly_correspond(F,A,B,V6) -> converttext(run(D,C,V7,E),E,V8) = 
converttext(run(F,C,V9,V6),V6,V8)

Assumption 
define_
portable_
and_
deterministic

2 accurately_translates(A,B,C,D,E,F) -> 
exactly_correspond(compile(C,A,D,E,F),C,B,F)

Assumption 
define_
exactly_
correspond

3 (all A accurately_translates(cT,lsP,sP,A,e1,e2))
Assumption 
cT_
compiles_sP

4 cA = stage2 Goal 
always_equal

5 portable_and_deterministic(sP,lsP,retarget(sA,eArun))

Assumption 
sP_portable_
and_
deterministic

6
-portable_and_deterministic(A,B,C) | -exactly_correspond(D,A,B,E) | 
-exactly_correspond(F,A,B,V6) | converttext(run(F,C,V7,V6),V6,V8) = 
converttext(run(D,C,V9,E),E,V8)

Clausify 1

7 accurately_translates(cT,lsP,sP,A,e1,e2) Clausify 3

8 -accurately_translates(A,B,C,D,E,F) | 
exactly_correspond(compile(C,A,D,E,F),C,B,F) Clausify 2

9 exactly_correspond(cP,sP,lsP,eA)

Assumption 
cP_
corresponds_
to_sP

10 compile(A,B,C,D,E) = extract(converttext(run(B,retarget(A,E),C,D),D,E))

Assumption 
cP_
corresponds_
to_sP

11 stage1 = compile(sP,cT,e1effects,e1,e2)
Assumption 
definition_
stage1

12 stage1 = extract(converttext(run(cT,retarget(sP,e2),e1effects,e1),e1,e2)) Para 10 11
13 extract(converttext(run(cT,retarget(sP,e2),e1effects,e1),e1,e2)) = stage1 Copy 12, flip

14 stage2 = compile(sA,stage1,e2effects,e2,eArun)
Assumption 
definition_
stage2

15 stage2 = 
extract(converttext(run(stage1,retarget(sA,eArun),e2effects,e2),e2,eArun)) Para 10 14

87



16 cA = compile(sA,cP,eAeffects,eA,eArun)
Assumption 
definition_
cA

17 cA = extract(converttext(run(cP,retarget(sA,eArun),eAeffects,eA),eA,eArun)) Para 10 16
18 cA != stage2 Deny 4

19 extract(converttext(run(cP,retarget(sA,eArun),eAeffects,eA),eA,eArun)) != 
stage2 Para 17 18

20 extract(converttext(run(cP,retarget(sA,eArun),eAeffects,eA),eA,eArun)) != 
extract(converttext(run(stage1,retarget(sA,eArun),e2effects,e2),e2,eArun)) Para 15 19

21 extract(converttext(run(stage1,retarget(sA,eArun),e2effects,e2),e2,eArun)) != 
extract(converttext(run(cP,retarget(sA,eArun),eAeffects,eA),eA,eArun)) Copy 20, flip

22
-exactly_correspond(A,sP,lsP,B) | -exactly_correspond(C,sP,lsP,D) | 
converttext(run(C,retarget(sA,eArun),E,D),D,F) = 
converttext(run(A,retarget(sA,eArun),V6,B),B,F)

Resolve 5 6

23 exactly_correspond(compile(sP,cT,A,e1,e2),sP,lsP,e2) Resolve 7 8

24 exactly_correspond(extract(converttext(run(cT,retarget(sP,e2),A,e1),e1,e2)),
sP,lsP,e2) Para 10 23

25 exactly_correspond(stage1,sP,lsP,e2) Para 13 24

26
-exactly_correspond(A,sP,lsP,B) | 
converttext(run(A,retarget(sA,eArun),C,B),B,D) = 
converttext(run(cP,retarget(sA,eArun),E,eA),eA,D)

Resolve 22 9

27 converttext(run(stage1,retarget(sA,eArun),A,e2),e2,B) = 
converttext(run(cP,retarget(sA,eArun),C,eA),eA,B)

Resolve 26 
25

28 compile(sA,stage1,A,e2,eArun) = 
extract(converttext(run(cP,retarget(sA,eArun),B,eA),eA,eArun)) Para 27 10

29 extract(converttext(run(stage1,retarget(sA,eArun),A,e2),e2,eArun)) = 
extract(converttext(run(cP,retarget(sA,eArun),B,eA),eA,eArun)) Para 10 28

30 $F Resolve 29 
21

5.7.15 Discussion of proof #2

Note that proof #2’s goal could be true, even if some of proof #2’s assumptions (above) are false. 

First, note that the goal of proof #2 is:

stage2 = cA.

This equality could, in theory, have occurred by other means.  As an extreme example, perhaps cA 

was created by randomly generating data of the same length and then using it as an executable. 
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In practice, even minor changes (other than changing comments) that invalidate any of proof #2’s 

assumptions will tend to make this goal fail.  As shown in chapter 7, DDC is extremely sensitive 

to even very minor deviations that make one of proof #2’s assumptions false.

Since cA=stage2 when proof #2’s assumptions are true, then if cA≠stage2, then at least one of the 

assumptions of proof #2 must be false.  For example, if cA≠stage2, perhaps compiler executable cP 

is corrupted; this would mean assumption cP_exactly_corresponds is false.  Similarly, perhaps 

compiler executable cA is corrupted (e.g., it was replaced by some corrupt executable); this would 

mean  that  assumption  definition_cA is  false.   If  we  only  know  that  cA≠stage2,  we  cannot 

determine  from  this  proof  which assumption(s)  are  false.  However,  once  we  know  that 

cA≠stage2, we can then try to obtain other information to determine the cause(s).

Note that this proof permits sP≠sA and cP≠cA, but it does not require it.  Thus, it’s quite possible 

that sP=sA and/or cP=cA.

5.8 Proof #3: Goal cP_corresponds_to_sP

Proof #2 is  intentionally designed to not  require that  a grandparent  compiler  cGP exist  in the 

putative origins of cA.  But having a grandparent compiler is a common circumstance, and in this 

circumstance, one of the assumptions of proof #2 can be proved using other assumptions that may 

be easier to confirm.

Proof #2 depended on assumption cP_corresponds_to_sP (see section 5.7.10):

exactly_correspond(cP, sP, lsP, eA).

If a putative grandparent compiler cGP does exist, this assumption is easily proven given some 

different  assumptions.   Simply  reuse  define_exactly_correspond  as  already defined,  and  add 

definition definition_cP and assumption cGP_compiles_sP as described below.
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5.8.1 Definition definition_cP

First, we must define how cP was putatively generated – by grandparent compiler cGP:

cP = compile(sP, cGP, ePeffects, eP, eA).

Note the strong similarity to definition_cA used earlier in section 5.7.12.

5.8.2 Assumption cGP_compiles_sP

We also need to assume that the grandparent compiler cGP will accurately translate the source 

code sP:

all EnvEffects accurately_translates(cGP, lsP, sP, EnvEffects, eP, eA).

Note the strong similarity to cT_compiles_sP in section 5.6.4.

5.8.3 Goal cP_corresponds_to_sP

Given define_exactly_correspond, definition_cP, and cGP_compiles_sP, as described above, the 

goal is trivially proved by prover9 (as shown below).  Recall that the goal is:

exactly_correspond(cP, sP, lsP, eA).

5.8.4 Prover9 proof of cP_corresponds_to_sP

Table 4 presents the proof found by prover9.
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Table 4: Proof #3 (cP_corresponds_to_sP) in prover9 format
# Formula Rationale

1 (all A accurately_translates(cGP,lsP,sP,A,eP,eA)) Assumption 
cGP_compiles_sP

2 accurately_translates(A,B,C,D,E,F) -> 
exactly_correspond(compile(C,A,D,E,F),C,B,F)

Assumption define_
exactly_correspond

3 exactly_correspond(cP,sP,lsP,eA) Goal cP_corresponds_
to_sP

4 -accurately_translates(A,B,C,D,E,F) | 
exactly_correspond(compile(C,A,D,E,F),C,B,F) Clausify 2

5 accurately_translates(cGP,lsP,sP,A,eP,eA) Clausify 1
6 cP = compile(sP,cGP,ePeffects,eP,eA) Assumption  definition_cP
7 -exactly_correspond(cP,sP,lsP,eA) Deny 3
8 -exactly_correspond(compile(sP,cGP,ePeffects,eP,eA),sP,lsP,eA) Para 6 7
9 exactly_correspond(compile(sP,cGP,A,eP,eA),sP,lsP,eA) Resolve 4 5
10 $F Resolve 9 8

5.8.5 Discussion of proof #3

Proof #3 shows that, when a grandfather compiler is used as part of a benign environment, an 

assumption of proof #2 (cP_corresponds_to_sP) is true.
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6 Methods to increase diversity

As discussed in section 4.3, DDC must be executed using only “trusted” processes and programs. 

Something is trusted to the extent that there is justified confidence that it does not have triggers 

and payloads that would affect the results of DDC.

This confidence can be gained in a variety of ways.  One method to gain such confidence is to 

perform a complete formal proof of the compiler executable cT and of the environments used in 

DDC, along with evidence that what  actually runs is what  was proved.   But  such proofs are 

difficult  to perform with compilers  typically used in  industry.   Another method to gain such 

confidence is to re-apply DDC on compiler cT and/or the DDC environments; this can help, but 

re-applying DDC would require the use of yet  another trusted compiler and environments, and 

this  application  of  DDC  would  repeat  until  there  was  (1)  a  “final”  trusted  compiler  and 

environments, or (2) a loop of trusted compilers and environments.  In either case, at that point 

some other method is needed to increase confidence in the trusted compiler and environments.

A simple method to gain such confidence is through diversity.  Diversity can greatly reduce the 

likelihood  that  trusted  compiler  cT and  the  DDC  environments  have  relevant  triggers  and 

payloads,  often  at  far  less  cost  than  other  approaches.   There  are  many ways  we  can  gain 

diversity;  these include diversity in compiler implementation, in time, in environment,  and in 

input source code.  These can be combined to further increase confidence that relevant triggers 

and payloads will not activate.
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6.1 Diversity in compiler implementation

Compiler cT’s executable could be a completely different implementation than compiler cA or cP. 

This means it would have no (or little) shared code or data structures.  It would be best if the 

source code of cT did not have a common ancestor with cA or cP, since having a common ancestor 

greatly increases the likelihood of shared code or data structures.  Using a completely different 

implementation  reduces  the  risk  that  cT includes  triggers  or  payloads  that  affect  cP or  cA. 

Compiler cT’s executable could include triggers and payloads for compilers other than cT, but this 

is less likely.

Ideally, no previous version of compiler cT would have been compiled by any version of compiler 

cA or cP, even in cT’s initial bootstrap.  This is because compiler cA or cP could insert into the 

executable code some routines to check for any processing of compiler cA or cP so that it can later 

“re-infect” itself.  This kind of attack is difficult to do, especially since bootstrapping is usually 

done very early in a compiler’s development and an attacker may not even be aware of compiler 

cT’s existence.  One of the most obvious locations where this might be practical might be in the 

input/output (I/O) routines.  However, I/O routines are more likely to be viewed at the assembly 

or machine level than some other routines (e.g., to do performance analysis), so an attacker risks 

discovery if they subvert I/O routines.

6.2 Diversity in time

If compiler cT and the DDC environment were developed long before the compiler cP and cA, and 

they do not share a common implementation heritage, it is improbable that compiler cT or its 

environment  would  include  relevant  triggers  for  a  not-yet-implemented  compiler.   Magdsick 

makes a similar point [Magdsick2003].  In theory, a compiler author could attempt to develop a 

newer compiler’s source code so that it would be subverted by older compiler executables, but 
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this requires control over the newer compiler’s source code, explicit knowledge of the triggers 

and payloads of the older compiler, and triggers and payloads in the older compiler that would be 

relevant to a newer, different compiler.

The reverse (using a newer compiler executable to check an older compiler executable) gains less 

confidence.  This is because it is easier for a recently-released compiler executable to include 

triggers  and  payloads  for  many  older  compilers,  including  completely  different  compilers. 

Nevertheless, this can still increase confidence somewhat, since to avoid detection by DDC the 

attacker must successfully subvert multiple compiler executables.

Diversity in time can only provide significant confidence if it can be clearly verified that the 

“older” materials are truly the ones that existed at the earlier time.  This is because a resourceful 

attacker could tamper with those copies if given an opportunity to do so.   Instead,  protected 

copies  of  the  original  media  should  be  preferred  to  reduce  the  risk  of  tampering.   Multiple 

independently-maintained copies can be compared with each other to verify that the data used is 

correct.  Cryptographic hashes can be used to verify the media; multiple hash algorithms should 

be used, in case a hash algorithm is broken.

An older executable version of compiler cA or cP can be used as compiler cT if there is reason to 

believe that the older version is not corrupt or that any Trojan horse in the older version of cA will 

not be triggered by sA.  Note that this is a weaker test; the common ancestor could have been 

subverted.  This technique gives greater confidence if the changes in the compiler have been so 

significant  that  the  newer  version is  in  essence a  different  compiler,  but  it  would be best  if 

compiler cT were truly a separate implementation.
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6.3 Diversity in environment

Different  environments  could  be  used  in  the  DDC process  than  were  used  for  the  original 

generation of cA.  The term “environment” here means the entire infrastructure supporting the 

compiler  including  the  CPU architecture,  operating  system,  supporting  libraries,  and  so  on. 

Using a completely different environment counters Trojan horses whose triggers and payloads are 

actually in the executables of the environment, as well as countering triggers and payloads that 

only work on a specific operating system or CPU architecture.

These benefits could be partly achieved through emulation of a different system.  There is always 

the risk that the emulation system or underlying environment could be subverted specifically to 

give misleading results, but attackers will often find this difficult to achieve, particularly if the 

emulation system is developed specifically for this test (an attacker might have to develop the 

attack before the system was built!).

In any case, the environment used to execute the DDC process should be isolated from other 

tasks.  It should not be running any other processes (which might try to use kernel vulnerabilities 

to detect a compilation and subvert it), and it should have limited (or no) network access.

6.4 Diversity in source code input

Another  way  to  add  diversity  would  be  to  use  mutated  source  code  [Draper1984] 

[McDermott1988].  The purpose of mutating source code is to make it less likely that triggers 

designed to attack the compilation of sP or sA will activate, and if they do, to reduce the likelihood 

that any payloads will be effective.

In terms of DDC, compiler cT would become a source code transform (the mutator), a compiler 

(possibly an original compiler) cX, and possibly a postprocessing step.  These mutations could be 
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implemented by automated tools, or even manually.  The resulting cT must be trusted, so trust 

must  be  given to  the  mutator(s),  and  the  mutators  must  cause  sufficient  change  so  that  any 

triggers or payloads in cX will not have an effect when used as part of DDC.

There are two major types of mutations of source code: semantics-preserving and non-semantics 

preserving:

• In semantics-preserving mutations, the source code is changed to an equivalent program 

(that is, it will continue to produce the same outputs given the same inputs).  This could 

include  mutations  such  as  renaming  items  (such  as  variables,  functions,  and/or 

filenames),  reordering  statements  where  the  order  is  irrelevant,  and  regrouping 

statements.  It can also include much more substantive changes, such as translating the 

source  code  into  a  different  programming  language.   Even  trivial  changes,  such  as 

changing whitespace, slightly increases diversity (though typically not enough by itself to 

justify a claim that all potential triggers and payloads are disabled).  Forrest discusses 

several methods for introducing diversity [Forrest1997].

• In  non-semantics-preserving  mutations,  the  original  semantics  of  the  source  code  as 

presented to the compiler are not preserved.  Instead, the goal is to preserve the necessary 

semantics of the source code when executed with the addition of preprocessing of its 

input to the execution and/or postprocessing of the execution output.  Often this involves 

adding extraneous  functionality to  the  source code,  whose output  is  removed by the 

postprocessor, in the hope that this will cause triggers and payloads to fail.  For example, 

the mutator may insert an additional text formatter that generates formatted output as well 

as  an  executable;  the  postprocessor  must  then  remove  or  throw out  that  extraneous 

information.   One  challenge  of  this  approach  is  that  since  semantics  are  no  longer 
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preserved, the postprocessing must remove changes that would affect DDC.  McDermott 

discusses the advantage of this approach [McDermott1988].

Mutations can also be used to determine the specification of language lsP with greater precision16. 

Presume that we have a non-mutated sP and that we can verify cA using DDC.  We can then apply 

successive  semantics-preserving  mutations  to  sP (e.g.,  focusing  on  areas  that  the  language 

specification leaves undefined) and see if they cause a false negative.  If a mutation causes a false 

negative, that mutation reveals an undocumented requirement of language lsP.

16My thanks to Aaron Hatcher, who made this observation.
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7 Demonstrations of DDC

The formal proof only shows that if something could be done, it would produce certain specific 

results.  This chapter documents several demonstrations showing that DDC can be performed in 

the real world, and is thus a practical technique.  This chapter presents results from tcc (a small C 

compiler),  ported  versions  of  Goerigk’s  Lisp  compilers  (one  of  which  is  known  to  be  a 

maliciously  corrupted  executable),  and  the  widely-used  industrial-strength  GNU  Compiler 

Collection (GCC)  C compiler.   In  some cases,  it  will  be  important  to  track  certain  libraries 

separately from the “compiler source code” as it is traditionally defined; in such cases, the figures 

will show them as separate inputs.

7.1 tcc

Before [Wheeler2005], there had been no public evidence that DDC had been used.  One 2004 

GCC mailing list  posting stated,  “I’m not aware of any ongoing effort,” [Lord2004]; another 

responded, “I guess we all sorta hope someone else is doing it.” [Jendrissek2004].  This section 

describes its first demonstration (from [Wheeler2005]).

A public demonstration requires a compiler whose source code is publicly available.  Other ideal 

traits for the initial test case included being relatively small and self-contained, running quickly 

(so that test runs would be rapid), having an open source software license (so the experiment 

could be repeated and changes could be publicly redistributed [Wheeler2005]), and being easily 

compiled by another compiler.  The compiler needed to be relatively defect-free, since defects 
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would interfere with these tests.  The Tiny C Compiler, abbreviated as TinyCC or tcc, was chosen 

as it appeared to meet these criteria.

The  compiler  tcc  was  developed  by  Fabrice  Bellard  and  is  available  from  its  website  at 

http://www.tinycc.org/.  This project began as the Obfuscated Tiny C Compiler, a very small C 

compiler Bellard wrote to win the International Obfuscated C Code Contest in 2002.  He then 

expanded this small compiler so that it now supports all of American National Standards Institute 

(ANSI)  C,  most  of  the  newer  International  Organization for  Standardization (ISO) (sic)  C99 

standard, and many GNU C extensions including inline assembly.  The compiler tcc appeared to 

meet the requirements given above.  In addition, tcc had been used to create “tccboot,” a Linux 

distribution that first booted the compiler and then recompiled the entire kernel as part of its boot 

process.  This capability to compile almost all code at boot time could be very useful for future 

related work, and suggested that the compiler was relatively defect-free.

The  following sub-sections  describe  the  test  configuration,  the  DDC process,  problems  with 

casting 8-bit values and long double constants, and final results.

7.1.1 Test configuration

All tests ran on an x86 system running Red Hat Fedora Core 3.  This included Linux kernel 

version 2.6.11-1.14_FC3 and GCC version 3.4.3-22.fc3.  GCC was both the bootstrap compiler 

and the trusted compiler for this test; tcc was the simulated potentially corrupt compiler.

First, a traditional chain of recompilations was performed using tcc versions 0.9.20, 0.9.21, and 

0.9.22.  After bootstrapping, a compiler would be updated and used to compile itself.  Their gzip 

compressed tar files have the following Secure Hash Algorithm (SHA) values using SHA-1 (these 

are provided so others can repeat this experiment):
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6db41cbfc90415b94f2e53c1a1e5db0ef8105eb8  0.9.20
19ef0fb67bbe57867a590d07126694547b27ef41  0.9.21
84100525696af2252e7f0073fd6a9fcc6b2de266  0.9.22

As is usual, any such sequence must start with some sort of bootstrap of the compiler.  GCC was 

used to bootstrap tcc-0.9.20, causing a minor challenge: GCC 3.4.3 would not compile tcc-0.9.20 

directly because GCC 3.4.3 added additional checks not present in older versions of GCC.  In tcc-

0.9.20, some functions are declared like this, using a GCC extension to C:

void *__bound_ptr_add(void *p, int offset) __attribute__((regparm(2)));

but the definitions of those functions in tcc’s source code omit the __attribute__((regparm(...))). 

GCC 3.4.3 perceives this as inconsistent and will not accept it.  Since this is only used by the 

initial bootstrap compiler, we can claim that the bootstrap compiler has two steps: a preprocessor 

that removes these regparm statements, and the regular GCC compiler.  The regparm text is only 

an optimization with no semantic change, so this does not affect our result.

This process created a tcc version 0.9.22 executable file which we have good reasons to believe 

does not have any hidden code in the executable, so it can be used as a test case.  Now imagine an 

end-user with only this executable and the source code for tcc version 0.9.22.  This user has no 

way to ensure that the compiler has not been tampered with (if it has been tampered with, then its 

executable  will  be  different,  but  this  hypothetical  end-user  has  no “pristine” file  to  compare 

against).  Would DDC correctly produce the same result?

7.1.2 Diverse double-compiling tcc

Real compilers are often divided into multiple pieces.  Compiler tcc as used here has two parts: 

the main compiler (file tcc) and the compiler run-time library (file libtcc1.a; tcc sometimes copies 

portions  of  this  into  its  results).   For  purposes  of  this  demonstration,  these  were  the  only 

components being checked; everything else was assumed to be trustworthy for this simple test 
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(this assumption could be removed with more effort).  The executable file tcc is generated from 

the source file tcc.c and other files; this set is notated stcc.  Note: the tcc package also includes a 

file called tcclib, which is not the same as libtcc1.
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Figure 5 shows the process used to perform DDC with compiler tcc.  First, a self-regeneration test 

was performed to make sure we could regenerate files tcc and libtcc1; this was successful.  Then 

DDC was performed.  Notice that stages one and two, which are notionally one compilation each, 

are actually two compilations each when applied to compiler tcc because we must handle two 

components in each stage (in particular, we must create the recompiled run-time before running a 

program that uses it).

One challenge is that the run-time code is used as an archive format (“.a” format), and this format 

includes a compilation timestamp of  each component.   These timestamps will,  of  course,  be 

different from any originals unless special efforts are made.  Happily, the run-time code is first 

compiled into an ELF .o format (which does not include these timestamps), and then transformed 

into an archive format using a trusted program (ar).  So, for testing purposes, the libtcc1.o files 

were compared and not the libtcc1.a files.

Unfortunately, when this process was first tried, the DDC result did not match the result from the 

chain of updates, even when only using formats that did not include compilation timestamps. 

After much effort this was tracked to two problems: a compiler defect in sign-extending values 

cast to 8-bit values, and uninitialized data used while storing long double constants.  Each of 

these issues is discussed next, followed by the results after resolving them.

7.1.3 Defect in sign-extending cast 8-bit values

A subtle defect in tcc caused serious problems.  The defect occurs if a 32-bit unsigned value is 

cast to a signed 8-bit value, and then that result is compared to a 32-bit unsigned value without 

first storing the result in a variable (which should sign-extend the 8-bit value).  Here is a brief 

description of why this construct is used, why it is a defect, and the impact of this defect.
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The x86 processor machine instructions can store 4 byte constants as 4 bytes, but since programs 

often use constants in the range -128..127, constants in this range can also be stored in a shorter 

1-byte format.  Where possible, tcc tries to use the shorter form, using statements like this to 

detect them (where e.v is of type uint32, an unsigned 32-bit value):

if (op->e.v == (int8_t)op->e.v && !op->e.sym) {

Unfortunately,  the  value  cast  to  (int8_t)  is  not  sign-extended  by  tcc  version  0.9.22  when 

compared to an unsigned 32-bit integer.  Version 0.9.22 does drop the upper 24 bits on the first 

cast to the 8-bit signed integer, but it fails to sign-extend the remaining 8-bit signed value unless 

the 8-bit value is first stored in a variable.  This is a defect, at least because tcc’s source code 

depends on a drop with sign-extension and tcc is supposed to be self-hosting.  It is even more 

obvious that this is a defect because using a temporary variable to store the intermediate result 

does enable sign-extension.  This is documented as a known defect in tcc 0.9.22’s own TODO 

documentation, though this was only discovered after laboriously tracking down the problem. 

According to Kernighan [Kernighan1998] section A6.2 and the ISO/IEC C99 standard section 

6.3.1.3 [ISO1999], converting to a smaller signed type is implementation-defined, but conversion 

of that to a larger unsigned value is required to sign-extend.  Note that GCC does do the drop and 

sign-extension (as tcc’s author expects).

This defect results in incorrect code being generated by tcc 0.9.22 if it is given values in the range 

0x80..0xff in this construct.  But when compiling itself, tcc merely generates slightly longer code 

than necessary in certain cases.  Thus, a GCC-compiled tcc generates code of this form (where 3-

byte codes are used) when compiling some inline assembly in the tcc run-time library libtcc1:
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1b5: 2b 4d dc  sub 0xffffffdc(%ebp),%ecx
1b8: 1b 45 d8  sbb 0xffffffd8(%ebp),%eax

But a tcc-compiled tcc incorrectly chooses the “long” form of the same instructions (which have 

the same effect—note that the disassembled instructions are the same but the machine code is 

different):

1b5: 2b 8d dc ff ff ff  sub 0xffffffdc(%ebp),%ecx
1bb: 1b 85 d8 ff ff ff  sbb 0xffffffd8(%ebp),%eax

This defect  in  sign-extension causes  the failure of  assumption cGP_compiles_sP (see  section 

5.8.2), which requires that the grandparent compiler accurately compile source sP.  This is a key 

assumption  of  proof  #3;  since  this  assumption  is  not  true,  the  goal  of  proof  #3 

(cP_corresponds_to_sP) need not hold.  Since cP_corresponds_to_sP is an assumption of proof 

#2, the goal of proof #2 (always_equal) need not hold in this situation.

To resolve this issue, tcc was modified slightly so it would store such intermediate values in a 

temporary variable, avoiding the defect; a better long-term solution would be to fix the defect.

Note  that  if  the  grandparent  compiler  did accurately compile  source  code  sP,  then  the  DDC 

technique would have correctly reported that the source and executable exactly corresponded, 

even though both source code sP and sA (which are equal in this case) incorrectly implemented the 

language.   DDC  does  not necessarily  report  on  whether  or  not  the  source  code  correctly 

implements the applicable languages; it merely reports if source and executable correspond when 

its assumptions are true.

As  with  any test,  merely passing  this  test  (or  any other  single  test)  does  not  show that  the 

compiler-under-test works correctly under all possible inputs.  Nevertheless, this example shows 

that DDC can be a useful test for unintentional compiler defects—small defects that might not be 

noticed by other tests may immediately surface when using DDC.
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7.1.4 Long double constant problem

Another problem resulted from how tcc outputs long double constants.  The tcc outputs floating 

point constants in the “data” section, but when tcc compiles itself, the tcc.c line:

if (f2 == 0.0) {

outputs inconsistent data section values to represent 0.0.  The tcc compiled by GCC stores 11 

0x00 bytes followed by 0xc9, while tcc compiled by itself generates 12 0x00 bytes.  Because f2 

has type “long double,” tcc eventually stores this 0.0 in memory as a long double value.  The 

problem is that tcc’s “long double” uses only 10 bytes, but it is stored in 12 bytes, and tcc’s 

source code does not initialize the extra 2 bytes.  The two excess “junk” bytes end up depending 

on  the  underlying  environment,  causing  variations  in  the  output  [Dodge2005].   In  normal 

operation these bytes are ignored and thus cause no problems.

These tcc “junk” bytes cause a failure in proof #2 assumption sP_portable_and_deterministic (see 

section 5.7.3). Since the values aren’t set, there is no guarantee by the language that the results 

match between implementations.  Depending on the compiler implementations, this may also 

cause a failure in proof #2 assumption sP_deterministic.  Thus, the results of proof #2 do not 

apply to this case.

To resolve this, the value “0.0” was replaced with the expression (f1-f1), since f1 is a long double 

variable  known  to  have  a  numeric  value  at  that  point.   This  is  semantically  the  same  and 

eliminated the problem.  A better long-term solution for tcc would be to always set these “excess” 

values to constants (such as 0x00).
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7.1.5 Final results with tcc demonstration

After patching tcc 0.9.22 as described above,  and running it  through the processes described 

above, exactly the same files were produced through the chain of updates and through DDC.  This 

is  shown by these  SHA-1 hash values  for  the  compiler  and its  run-time  library,  which were 

identical for both processes:

c1ec831ae153bf33bff3df3c248b12938960a5b6 tcc
794841efe4aad6e25f6dee89d4b2d0224c22389b libtcc1.o

But can we say anything about unpatched tcc 0.9.22?  We can, once we realize that we can (for 

test purposes) pretend that the patched version came first, and that we then applied changes to 

create the unpatched version.  Since we have shown that the patched version’s source accurately 

represents the executable identified above, we only need to examine the effects of a reversed 

change that “creates” the unpatched version.  Visual inspection of the reversed change quickly 

shows that it has no triggers and payloads.  Thus, we can add one more chain from the trusted 

compiler to a “new” version of the compiler that is the untouched tcc-0.9.22.  We must compile 

again,  because  of  the  change  in  semantics  due  to  the  sign-extension  bug.   In  the  end,  the 

following  SHA-1  hash  values  are  the  correct  executables  for  tcc-0.9.22  on  an  x86  in  this 

environment when tcc is self-compiled:

d530cee305fdc7aed8edf7903d80a33b6b3ee1db tcc
42c1a134e11655a3c1ca9846abc70b9c82013590 libtcc1.o

7.2 Goerigk Lisp compilers

A second demonstration of DDC using a small compiler was performed using a pair of Lisp 

compilers developed in [Goerigk2000] and [Goerigk2002].  This demonstrated that DDC can be 

applied to languages other than C, and that it can detect corrupted compilers.
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Goerigk  developed  both  “correct”  and  “incorrect”  compilers  (Goerigk’s  terminology)  using 

ACL2, a theorem-prover supporting a Common-Lisp-like language.  Goerigk also developed an 

abstract machine simulator to run the code produced by the compilers.  Using DDC on this pair of 

compilers  demonstrates  (1)  the  ability  of  DDC  to  detect  a  maliciously  corrupted  compiler, 

including the differences in the corrupted compiler, (2) reconfirm the ability of DDC to detect the 

correct compiler executable, and (3) that DDC does not require C; these compilers are written in, 

and support, a LISP-based language.

To  perform this  demonstration,  the  compilers  and  virtual  machine  implementation  originally 

written by Goerigk were first ported to Common Lisp.  The compilers were originally written in 

ACL2, which is similar but not identical to Common Lisp.  There are far more Common Lisp 

implementations than ACL2 implementations, so porting it to Common Lisp enabled the use of 

many alternative compilers.  This port required removing uses of “defthm” (define theorem) and 

mutual  recursion declarations (ACL2 requires all  mutually-recursive functions to be specially 

declared; Common Lisp has no such requirement).  A few ACL2-unique functions were rewritten 

in Common Lisp, to allow the existing code to run: LEN (length), ZP (returns true if parameter X 

is not an integer, or if X is integer and X=0), TRUE-LISTP (returns True if its argument is a list 

that  ends  in,  or  equals,  nil),  and  ACL2-NUMBERP (is  value  a  number).   In  addition,  the 

“execute” command was renamed because on some Common Lisp implementations that  is  a 

predefined function name.  The GNU Clisp implementation was then used to run the tests, though 

any Common Lisp implementation would have served.

As expected, both the correct and incorrect compilers would produce correct code for a simple 

sample program (in this case, for a factorial function).  Both could regenerate themselves using 

the  correct  compiler  source  code  as  input,  demonstrating  that  they could  pass  the  compiler 
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bootstrap test and the self-regeneration test.  However, when given a special “login” program, the 

compiler  executables  would  produce  different answers.   Thus,  these  programs  really  do 

demonstrate the attack.

The DDC technique was then applied.  First, it was applied to the correct source code, using the 

underlying Common Lisp implementation (clisp) as the trusted compiler cT.  The stage 2 output 

was then compared to the correct compiler executable, and was shown to be equal.  The stage 2 

output was then compared to the incorrect compiler executable, and was shown to be not equal. 

A unified diff was then applied to the stage 2 and incorrect compiler executable; this showed the 

“unexpected” differences, and immediately revealed that the difference had something to do with 

the login program.  This difference is  an immediate tip-off that  there is something malicious 

happening; no compiler should be specifically looking for the login program, and then acting 

differently!  An examination of the difference quickly revealed that it was comparing the input to 

a login program’s pattern, and then inserting special code in this special case.

DDC detected the difference because proof #2 assumption definition_cA (see section 5.7.12) was 

not true in this case.   That is,  compiler-under-test  cA had not been generated by the putative 

process from the “correct” source code, but instead was created by compiling the “incorrect” 

source code.

Appendix A includes more detail, including the actual “diff” between the executable produced by 

DDC with the executable of the incorrect compiler.
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7.3 GCC

To conclusively demonstrate that DDC can be scaled up to apply to “industrial-scale” compilers 

widely used in commercial applications, the DDC process was successfully applied to the GNU 

Compiler Collection (GCC), specifically the C compiler of GCC.

In 1983, Richard Stallman began searching for a compiler that would help meet his goal to create 

an entire operating system that could be viewed, modified, and redistributed (without limitations 

like royalties).  He did not find an existing compiler that met his licensing, functionality, and 

performance requirements, so he began writing a C compiler from scratch, which became the 

basis of GCC.  Today, GCC is a GNU Project directed by the Free Software Foundation (FSF).  It 

is licensed under the GNU General Public License (GPL).

GCC is widely used, though specific statistics are difficult to find.  “GCC’s user base is large and 

varied...  no direct  estimate of  the total  number  of  GCC users is  possible...  [but]  GCC is the 

standard  compiler  shipped  in  every  major  and  most  minor  Linux  distributions  [and  is]  the 

compiler  of  choice  for  the  various  [Berkeley Software  Distribution (BSD)-derived]  operating 

systems...  The  academic  computing  community represents  another  large  part  of  GCC’s  user 

base... GCC is also widely used by nonacademic customers of hardware and operating system 

vendors... [considering] the broad range of hardware to which GCC has been ported, it becomes 

quite  clear  that  GCC’s user base is  composed of the  broadest  imaginable  range of  computer 

users.” [vonHagen2006]

7.3.1 Setup for GCC

DDC can be used to regenerate an existing compiler executable, given enough information on 

how it was compiled and the other assumptions already discussed.  However, after many fruitless 
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attempts to do this with Fedora Core, it was found that the Fedora project (and probably many 

other distributions) does not record all the information necessary to easily recreate the exact same 

compiler executable from scratch.  In some cases there were dependencies on software that was 

not shipped with the distribution.  This may seem surprising, but in practice this information has 

not  been  needed;  many organizations  record  these  files  for  later  use  instead  of  regenerating 

them.17

So for purposes of the experiment, a new GCC executable was created specifically to demonstrate 

DDC, using the publicly-available GCC source code.  The executable was created using the GCC 

executable that comes with Fedora (which was a different version than the source code being 

compiled) as the “grandparent” compiler.  To simplify the test, the compiler was self-regenerated, 

that  is,  sP=sA.   The  resulting  compiler  executable,  after  two  compilation  stages,  was  then 

considered to be the compiler-under-test cA.  Then, the DDC process was used (with a different 

trusted compiler) to determine if it would produce the same result as the compiler-under-test. 

This way, all necessary information for the experiment would be available.

The  GCC  suite  includes  a  large  number  of  different  compilers  for  different  languages. 

Attempting to cover all of these languages was not necessary for purposes of this dissertation. 

Thus, work focused on the C compiler.  Future work could add support for other languages using 

the approach described here.

The GCC suite depends on a great deal of external software.  This includes a linker (typically 

named  “ld”),  assembler  (typically  named  “as”),  archiver  (“ar”),  symbol  table  constructor 

(“ranlib”), and standard C library, as well as an operating system (especially a kernel) to run on. 

17 My thanks to Aaron Hatcher, who attempted to apply DDC to various versions of GCC included in 
Fedora Core, and to Jakub Jelinek of Red Hat, who tried to provide Aaron with the necessary information 
to regenerate the executables after-the-fact.  Aaron’s efforts were unsuccessful at the time, but they 
provided insight that later led to the successful application by Wheeler that is described here.
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In  particular,  the  C  compiler  cc1  generates  assembly  code,  which  is  then  assembled.   For 

purposes of this experiment, all of these external programs were considered to be external to the 

compiler.  These additional programs could have been covered by DDC by considering them as 

part  of  the  compiler,  however,  doing  so  would  have  made  this  first  experiment  even  more 

difficult, and would not have shown anything substantial.  These other programs are not trivial, 

but the main C compiler is key; once we can show that DDC can handle the “real” C compiler, 

expanding the scope of DDC to cover these other programs (if desired) is merely a matter of 

additional effort.

To  demonstrate  DDC,  a  second trusted compiler  was needed,  one that  was able  to  correctly 

process the large and complex GCC source code.  After examining several compilers, the Intel 

C++ Compiler (icc) was chosen.  In spite of its name, icc also includes a C compiler.  Initial tests 

suggested that icc was a relatively reliable compiler, and icc supports many GCC extensions and 

implementation-defined behavior with the same semantics, making it more likely to successfully 

compile GCC.  The latest version of icc available at the time, version 11.0, was used.

Is icc sufficiently trustworthy to be used as a trusted compiler?  There are at least two factors 

suggest that it is, because they decrease the risk that icc includes triggers and payloads that would 

subvert GCC and match any subversion already present in the GCC executable.  First, GCC is 

released under the GPL, while icc is a proprietary product not released under the GPL.  If icc’s 

source code included a significant amount of source code from GCC, this would be a significant 

copyright  infringement  case,  and  it  is  unlikely that  Intel  corporation  would  risk  releasing  a 

program in such an illegal way.   Thus, an attacker would need to write significantly different 

code to embed in each program.  Second, icc is produced by a completely separate organization 

(Intel) than GCC executables; thus, subverting both executables would require that the attacker 
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subvert  executables in two completely different  organizations’ processes.   Thankfully,  for  the 

purpose of  this  experiment,  it  does  not  matter  if  icc  is  sufficiently trustworthy or  not.   The 

primary reason to apply DDC to GCC is to show that DDC can “scale up” to large compilers like 

GCC.  From this vantage point, what matters is if DDC works with GCC, not whether or not icc 

is actually trusted.

There are many different versions of GCC available, and for purposes of the experiment, any 

version of GCC would do as the compiler-under-test.  However, it must be possible for the trusted 

compiler to compile the source code of the parent (in this case, it is the same as the compiler-

under-test).  The parent must also be able to compile the compiler-under-test (in this case, the 

compiler-under-test must be able to recompile itself).  The newer GCC versions 3.4.4, 4.0.4, and 

4.1.2 could not be easily recompiled by icc (giving error messages instead), so they were not used 

for this experiment.  Should DDC become a common process, compiler developers should test 

their compilers to ensure that they are easily compiled by  other compilers.   Remarkably, the 

source code for GCC version 3.1.1 could not be compiled by the GCC version installed in Fedora 

(version 4.3).  For purposes of this experiment, GCC version 3.0.4 was selected to be the source 

code for the compiler-under-test, since it met these requirements.

All compilations were performed on a personal computer running the Fedora 9 Linux distribution 

in 32-bit mode on an x86 system.  Compiler caches were completely disabled at all times (by 

removing the package ccache), to ensure that all recompilations were actually performed.  The 

“kernel-headers”  package  was  also  installed,  since  it  defined  key  constants  necessary  for 

recompilation of GCC.
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When recompiling the GCC compiler, a number of options are available, which unless required 

were left to their defaults.  For example, the “prefix” value, which identifies the  prefix of its 

pathname  when  installed,  was  left  as  its  default  value  “/usr/local”.   All  compilations  were 

performed as a normal user, and not as root.

As with tcc, the recompilation of gcc had many sub-steps.  In particular, certain run-time libraries 

were compiled first, before the compilation of the “main” compiler itself, just as with tcc.

7.3.2 Challenges

7.3.2.1 Master result directory

One piece of critical information that had to be recorded is the full  pathname of the “master 

result” directory that contains the source code and object directories.  This value is passed to the 

build  process  through the  DEST environment  variable,  and this  value embedded in  the  final 

executable.   In the experiment  this  value was “/home/dwheeler/thesis/work”,  but this specific 
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value is unimportant; the key is making certain that DDC uses the same value as was used when 

creating the compiler-under-test.

From  a  formal  proof  perspective,  the  contents  of  the  DEST  environment  variable  may  be 

considered part of the source code sP and sA.  If the value used during DDC is different than the 

value used to create the original parent and compiler-under-test, we would be compiling different 

source code, violating assumptions definition_stage1 and/or definition_stage2 when compiling sP 

or sA respectively (see section 5.7.1).  Thus, the results of proof #2 can only apply to GCC if the 

DEST value when performing DDC is the same as was used to create the original compiler-

under-test.  This demonstrates that successfully applying DDC may require extremely detailed 

information about the compilation of the compiler-under-test.  It might be better if the compiler 

did  not embed such information in its executable, to reduce the amount of data that must be 

duplicated (see appendix D for guidelines for compiler suppliers).

7.3.2.2 Obsolete format for tail

The build process for the chosen version of GCC (3.0.4), as part of its “make compare” step, uses 

an obsolete format for the “tail” command.  For example, it uses “tail +16c” to skip the first 16 

characters.  This format is no longer accepted by default by modern GNU implementations of 

“tail”, which interpret “tail +16c” as an attempt to read from a file named “+16c”.  This was 

resolved  by setting  the  environment  variable  “_POSIX2_VERSION” to “199209”  before  the 

build is performed; GNU tail will notice that this environment variable is set and use the older 

(GCC-expected) semantics.
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When the environment variable _POSIX2_VERSION is not set, assumption cT_compiles_sP (see 

section 5.7.2) is untrue, so the results of proof #2 would not apply.  In short, the trusted compiler 

must be configured so that it can compile source sP.

7.3.2.3 Libiberty library

Unfortunately, the DDC process did not produce an executable equal to the compiler-under-test at 

first, even after adjusting for the master result directory and the obsolete tail format.  This meant 

that one of the assumptions of proof #2 was still not true.  Determining why this was so (by 

tracking this backward through the executables and object code in a large compiler to determine 

the cause) was extremely time-consuming, due in part to the large size of GCC, and produced a 

very unexpected result.  It turned out that GCC 3.0.4 did not fully rebuild itself when later build 

stages were requested, even though the GCC recompilation documents stated that they did, due to 

the way the GCC build process handles its “libiberty” run-time library routines.

The  GCC  compiler  documentation  explains  that  its  normal  full  build  process,  called  a 

“bootstrap”, can be broken into “stages”.  The command “make bootstrap” is supposed to build 

GCC three times—once with the native compiler, once with the native-built compiler it just built, 

and once with the compiler it built the second time.  Each step of this process is called a “stage” 

[GNU2002, section 14].  The last two stages should produce the same results; “make compare” 

checks if this is true (this is a “compiler bootstrap” test).  This recompilation process includes 

recompilation of the “libiberty” library, a collection of lower-level subroutines used by various 

GNU programs.

Unfortunately, actual GCC build behavior does not match the GCC documentation for “make 

bootstrap”.  The stage1 compiler was  not used to recompile the internal libiberty library when 
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creating stage2; instead, the results of stage1 were directly copied into stage2.  This appears to be 

a side-effect of how the makefiles were written; when stage2 was performed, the make program 

determined that the libiberty object file was dated after the source, and skipped rebuilding it. 

Because of this, the resulting executable was actually a hodgepodge that combined the results of 

two different compilers into a single executable.  After a long effort to track down this problem, it 

was  noted  that  there  was  a  hint  about  this  defect  in  the  GCC  documentation,  though  its 

significance was not obvious at the time: “Libiberty [is only] built twice... fixing this, so that 

libiberty is built three times, has long been on the to-do list.” [GNU2002, section 14]

From the formal model’s perspective, this meant that assumption definition_stage2 was not true 

(see section 5.7.1).  Since this assumption was not true, the results of proof #2 do not apply.

It would be possible, though nontrivial, to directly apply DDC to this circumstance.  In this case, 

we have a “parent” compiler that is different than the compiler-under-test, so we would require 

the source code for both the compiler-under-test and the parent compiler.  But this would be a 

complex approach, far more complex than necessary for use as a real-world demonstration, and it 

was  clear  from the documentation that  the  intent of  the  compiler  authors  was to  completely 

regenerate the compiler in stage2.

Instead, the GCC makefile was modified to permit finer control over the building process.  Then 

the process to rebuild the compiler (for both the compiler-under-test and DDC) was modified so it 

correctly recompiled the entire compiler in stage 2, by doing:

• “make  all-bootstrap”,  which used the  “initial”  compiler  to  compile  libraries  (such  as 

libiberty) and necessary bootstrap tools to prepare for stage1.  The “initial” compiler for 

the “compiler-under-test” was a different version of GCC.  The initial compiler for DDC 

was, instead, icc.
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• “make stage1_build” to build the first stage GCC.

• A forced rebuild of libiberty, using the new stage1 compiler.

• “make stage2_build” to produce the final stage2 GCC.

• Although not strictly necessary, a “make stage3_build” followed by “make compare” was 

also done to detect certain kinds of recompilation errors.  (This is a “compiler bootstrap” 

test.)

7.3.3 GCC Results

Once  the  corrected  GCC  build  process  was  used  for  the  compiler-under-test  and  the  DDC 

process,  DDC produced bit-for-bit  identical  results  with the  compiler-under-test,  as expected. 

The resulting GCC compiler  is  actually a  set  of  files,  instead of  a  single  file.   Appendix  B 

presents the detailed results.
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8 Practical challenges

There are many practical challenges to implementing DDC.  This chapter discusses some of these 

challenges and how to overcome them.  Some of this information was discovered or extended 

through the process of implementing the demonstrations.

8.1 Limitations

All techniques have limitations.  DDC only shows that a particular executable corresponds to a 

particular source code, resulting in these key limitations of DDC:

• There may be other executables that contain Trojan horse(s) and yet claim to correspond 

to a given source.  This can be resolved by using cryptographic hashes of the executable 

and the source code, and including their hashes when reporting that DDC succeeds.

• The source code may have malicious code (such as Trojan horses) and/or errors, in which 

case the executable file will too.  However, if the source and executable correspond, the 

source code can be analyzed in the usual ways to find such problems.  Thus, DDC does 

not eliminate the need for review; instead, it allows review processes to concentrate on 

the source code, knowing that if certain other assumptions hold, DDC will prove that the 

executable will  correspond to the source code.  In short, DDC can show that there is 

“nothing hidden”, enabling review of source code instead of executable code.

• When the DDC result is not equal to the original compiler-under-test, at least one of the 

assumptions  of  proof  #2  has  been  violated,  but  it  may  not  be  apparent  which 
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assumption(s)  have  been  violated.   Determining  the  cause  may  require  examining 

differences of executables and/or the compilation process, which for large compilers can 

be difficult and time-consuming.  If a compiler executable does not correspond with its 

source code, it is corrupted.  This corruption need not be malicious, though as shown in 

appendix A, it is sometimes possible to examine the differences and determine that the 

corruption is malicious.  One potential cause for the inequality is non-determinism, which 

will be discussed next.

8.2 Non-determinism

Uncontrolled non-determinism may cause a  compiler  to generate different  results  at  different 

times for the same source input.  Even uninitialized values can cause this non-determinism, as 

was  the  case  for  tcc  (see  section  7.1.4).   It  may  be  easiest  to  modify  the  compiler  to  be 

deterministic  (e.g.,  add  an  option  to  set  a  random  number  seed  and  initialize  formerly 

uninitialized data).

Differences  that  do not  affect  the  outcome do not  affect  DDC.   For  example,  heap memory 

allocations during compilation often allocate different memory addresses between executions, but 

this is only a problem if the compiler output changes depending on the specific values of the 

addresses.  Roskind reports that variance in heap address locations affected the output of at least 

some versions of the Javasoft javac compiler.  He also stated that he believed that this was a bug, 

noting  that  this  behavior  made  port  validation  extremely  difficult  [Roskind  1988].   Many 

compiler  authors  avoid  making  compilers  non-deterministic  because  non-determinism makes 

testing difficult.
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8.3 Difficulty in finding alternative compilers

DDC requires a trusted compiler.  Unfortunately, there may not be other compilers for the general 

language used to write sA or sP.  Even if there are other compilers for the general language, sA or sP 

may use non-portable extensions.

Thankfully,  there  are  many  possible  solutions  if  sA or  sP cannot  be  compiled  by  existing 

compilers.   The  DDC  technique  only  requires  that  a  second  compiler  with  the  necessary 

properties be created.  An existing compiler could be modified (e.g., to add extensions) so it can 

perform the necessary compilation.  Another alternative is to create a trusted preprocessing step, 

possibly done by hand; in this case cT would be defined as being the preprocessing step plus the 

existing compiler.  It is also possible to write a new trusted compiler from scratch.

In general, performance of the trusted compiler is irrelevant, and the trusted compiler only needs 

to be able to compile one program (so it  need not  implement many complex functions).   In 

addition, there are good reasons to have a second compiler that have nothing to do with DDC 

(e.g., having an alternative to switch to if the primary compiler has fundamental problems).  Thus, 

this need for a trusted compiler does not create a fundamental limitation to the application of 

DDC.  Indeed, compiler developers may choose to limit the code constructs used in a compiler 

(e.g., to a well-standardized and easily-implemented subset), specifically to ease the application 

of DDC.

It may be possible to use an older version of cA as cT, but as noted in section 6.2, that is far less 

diverse so the results are far less convincing.  Doing so also risks  “pop-up” attacks, described 

next.
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8.4 Countering “pop-up” attacks

A “pop-up” attack, as defined in this dissertation, is where an attacker includes a self-perpetuating 

attack in only some versions of the source code (where the attack “pops up”), and not in others. 

The attacker may choose to do this if,  for example, the attacker believes that defenders only 

examine the source code of some versions and not others.

Imagine that some trusted compiler cT is used to determine that an old version of compiler cA—

call  it  cA1—corresponds  to  its  source  sA1.   Now  imagine  that  an  attacker  cannot  modify 

executables directly (e.g., because they are regenerated in a separate controlled process), but that 

the attacker can modify the source code of the compiler (e.g., by breaking into its repository). 

The attacker could sneak malevolent self-perpetuating code into  sA2 (which is used to generate 

cA2), and then remove that malevolent code from sA3.  If cA2 is used to generate cA3, then cA3 may 

be maliciously corrupted, even though sA3 does not contain malevolent code and cA1 corresponded 

to sA1.  Examination of every change in the source code at each stage can prevent this, but this 

must be thorough; examining only the source’s beginning and end-state will miss the attack.

The safest way to counter “pop-up” attacks is to re-run DDC on every executable release before 

the executable is used as a compiler, using a trusted compiler cT.  If that is impractical, at least use 

DDC periodically and unpredictably to reduce the attack window and increase the attacker’s risk 

of discovery.

8.5 Multiple sub-components

Compilers may have multiple sub-components (such as a preprocessor, a front end, a back end, a 

peephole optimizer,  a linker, a loader, and one or more run-time libraries).  All of these sub-

components could be in different files and be generated by separate recompilation steps.  If these 
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recompilations can be done in any order, and there is no interaction between them, we can simply 

perform each step, in any order.  But if  compiling a sub-component depends on the result of 

recompiling another sub-component (e.g., because it's a run-time library that will be embedded in 

the resulting executable), then these dependencies must be honored, just as when recompiling the 

compiler for any other reason.  In general, if the sequence steps matters during compilation of sP 

or  sA, then applying DDC must take sequencing into account (the safest approach is to use the 

same sequence as was used to create the original cP and cA).

Compiler cT may have multiple components, but since its recompilation is out-of-scope of DDC, 

this is irrelevant.  All that is necessary is that cT have the required properties (as a suite) for DDC.

8.6 Timestamps and inexact comparison

One potential challenge is that, in some cases, the compiler-under-test and the DDC result will 

not normally be equal (when DDC is applied and “equality” is defined in the obvious ways).  For 

example,  some  compilers  generate  formats  (such  as  the  archive  “.a”  format)  that  embed 

timestamps;  when  compilers  are  re-run,  they  would  normally  produce  obtain  different  time 

values, and thus will generate different results.  Typically the problem is that the parent compiler 

is not deterministic (see section 5.7.8).

The timestamps of executable files are normally not a problem if the executable is represented as 

a set of files,  each of which has a timestamp (e.g.,  a “modification time”) as part  of the file 

metadata maintained by an operating system.  A timestamp cannot normally change execution in 

such cases, as execution does not usually begin by executing a timestamp; instead, execution 

begins by loading and executing the contents of a file.  From there on, since file contents of cA 

and stage2 are the same, the execution of cA and stage2 must be identical as long as they only 
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consider their contents and do not retrieve metadata about themselves (such as timestamps).  If 

timestamp information  is retrieved and acted upon by the compiler-under-test, at least the first 

occurrence of this must be included in cA.  Since the file contents of cA and stage2 are identical, 

then this first occurrence must be in the file contents of stage2.  Thus, at least this first occurrence 

must be in the source code processed by DDC.  This means that  we only need to review the 

source code as used in DDC and consider operations that  can retrieve timestamp information, 

which  are  typically  separate  operations,  to  detect  if  subversion  via  timestamps  might  occur. 

Unfortunately, this argument does not help if timestamps are embedded in the files themselves, as 

many operations are based on file contents.  Are there other solutions?

In some cases,  the  simplest  solution  is  to  simply use  executable  formats  that  do not  embed 

timestamps in the first place.  For example, for tcc, the ELF “.o” format (which does not embed 

timestamps) was used instead of directly comparing files in the “.a” format (see section 7.1.2). 

Once this comparison is done, trusted tools can be used to transform formats that can be directly 

compared (like “.o”) into formats that have embedded timestamps (like “.a”).  Where possible, 

this will tend to be the easiest approach.

If formats with embedded timestamps must be used, in some cases it is possible to rig the original 

compilation of cA and/or the DDC process so that the compilation processes would receive equal 

timestamp results.  This approach attempts to make the compilation process deterministic.

Finally, in certain cases, “equality” may need to redefined, essentially allowing inexact equality. 

Comparisons need not require an identical result as long as it can be shown that the differences do 

not cause a change in behavior.  This might occur if, for example, outputs included embedded 

compilation timestamps.   Showing that  differences  in  results  do not  cause differences  in  the 

functionality,  in the presence of an adversary,  is possible but can be extremely difficult.   An 
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alternative is to first work to make the results identical, and then show that the steps leading from 

that trusted point do not introduce an attack.

8.7 Interpreters and recompilation dependency loops

In some cases, what is executed bears a more complicated relationship to source code than has 

been shown so far, but the trusting trust attack can still be countered using DDC.

It  does  not  matter  if  the  executable  is  a  sequence  of  native  machine  code  instructions  or 

something else (such as an “object file”, “byte code”, or non-native instructions).   All that is 

required is that there be some environment that can execute the instructions.  If there is a concern 

that some parts of the environment may be corrupted, consider those parts as part of the compiler 

(this requires their source code) and apply DDC.

Many language implementations do not generate a separate executable that is run later.  They may 

read and immediately execute source code (call it sE) a line at a time, or they may compile source 

code sE to an executable (often a specialized byte code) each time the source code is run and not 

save the executable for later use.  In these cases, the trusting trust attack does not directly apply to 

sE, since there is no separate executable in which malicious code can be hidden.  However, these 

implementations tend to be compiled executables (for speed); any language implementations that 

are compiled are vulnerable to the trusting trust attack, and DDC still applies to them.

As noted in section 4.5, DDC can be applied to compilers that recompile themselves (as a special 

case).  When compilers do not recompile themselves, DDC can be repeatedly applied to each 

ancestor compiler, from oldest to newest, to demonstrate that each of the ancestor compilers are 

not corrupt.  If there is a loop of compilers (e.g., compiler cA is used to generate compiler cB, and 
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cB is used to generate the next version of compiler cA), DDC can still be used; arbitrarily choose a 

compiler to check, and “break the loop” using an alternative trusted compiler.

8.8 Untrusted environments and broadening DDC application

The environment of cA may be untrusted.  As noted earlier, an attacker could place the trigger 

mechanism in  the  compiler’s  supporting  infrastructure  such  as  the  operating  system kernel, 

libraries,  or  privileged  programs.   Triggers  would  be  especially easy to  place in  assemblers, 

linkers, and loaders.  But even unprivileged programs might be enough to subvert compilations; 

an attacker could create a program that exploited unknown kernel vulnerabilities.

The DDC technique can be used to cover these cases as well.  Simply redefine the “compiler” cA 

to include the set of all components to be checked, and not just the traditional interpretation of the 

term “compiler”.   This could even include the set  of  all  software that  runs on that  machine, 

including all software run at boot time.  The source code for all this software to be checked would 

still be termed  sA, but  sA would now be much larger.  Consider obtaining cA and  sA from some 

read-only medium (e.g., CD-ROM or inactive hard drive); do not trust this redefined untrusted cA 

to produce itself (e.g., by copying cA’s files using cA)!  Then, use DDC on a different trusted 

environment to check cA.  Depending on the scope of this new cA and sA, this might regenerate the 

boot software, operating system, various application programs, and so on.  If DDC can regenerate 

the original cA, then the entire set of components included in cA are represented by the entire set of 

source code in sA.  There is still a risk that cA includes malicious code, since DDC only shows that 

cA corresponds to sA, but this can be countered by reviewing sA.  If cA or its environment might 

have code that shrouds sA (so that the sA viewed is not the actual sA), always use a separate trusted 

system to view or print sA when reviewing sA.
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An alternative  approach to  countering potentially-malicious  environments  is  to  maximize the 

amount of  software that  is  used in source code form, without storing an executable.  This is 

already done with many “scripting” languages (such as typical implementations of Python and 

PHP).  It can, however, also be done with languages that are typically compiled.  The original 

developer of tcc demonstrated that the tcc C compiler could be booted with a relatively small 

infrastructure;  the  compiler  could  then  recompile  the  operating  system (including  the  Linux 

kernel) at boot time and then run the results.  DDC could still be used to examine whatever is 

stored  as  an  executable  for  the  underlying  environment  (e.g.,  the  scripting  language 

implementation or boot-time compiler).

A resourceful attacker might attack the system performing DDC (e.g., over a network) to subvert 

its results.  If this is a concern, DDC should be done on isolated system(s).  Ideally, the systems 

used to implement  DDC should be rebuilt  from trustworthy media, not connected to external 

networks at all, and not run any programs other than those necessary for DDC.

8.9 Trusted build agents

Few will want to perform  DDC themselves.  Organization(s) trusted by many others (such as 

government  agencies  or  trusted  organizations  sponsored  by them)  could  perform DDC on a 

variety of important compiler executables, as they are released, and report the cryptographic hash 

values of the executables and their corresponding source code.  The source code would not need 

to  be  released to  the  world,  so this  technique even could be applied to  proprietary software 

(though without the source code, the information that they correspond is much less useful).  This 

would allow others to quickly check if the executables they received were, in fact, what their 

software developers intended to send.  If someone did not trust those organizations, they could 

ask for another organization they did trust to do this, or do it themselves if they can get the source 
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code.   Organizations  that  do  checks  like  this  have  been  termed  “trusted  build  agents.” 

[Mohring2004]

8.10 Application problems with current distributions

There are a number of “distributions” that combine open source software from a large variety of 

different origins, integrate them, and distribute the suite to end users.  In theory, these should be 

easy to test using DDC.  Efforts to recreate the GCC compiler distributed with Fedora, even with 

help from Red Hat, showed that this is not always easy.

Accurately re-creating a distribution’s executable files requires extremely detailed information 

about how the compiler was generated, but distributors do not always record this information. 

Some of this detailed information can be obtained by attempting to apply DDC and examining the 

differences,  e.g.,  compiling  GCC  with  a  different  pathname  for  intermediate  results,  and 

comparing the results, will quickly reveal the original pathname.  However, in some cases, the 

difference can be detected by DDC, but the cause of the difference may not be obvious.

In some cases, obtaining the correct parent sP can be difficult.  Distributions typically release their 

software as a large set of interrelated “packages”, and most distributions distribute pre-compiled 

executables of their packages.  During development of a new distribution version, the compiler, 

libraries,  and  applications  are  all  updated,  sometimes  multiple  times.   Once  an  executable 

(compiler or not) is created, it is frozen and tested.  There is a strong incentive to not recompile 

the entire operating system when a compiler is revised, for if a problem occurs afterwards, it can 

be difficult to determine where the problem is.  In contrast, if packages are recompiled and tested 

one  at  a  time,  then  problems  can  be  immediately  pinpointed.   As  a  result,  the  practice  of 

incrementally testing and releasing executable files can lead to different packages being compiled 
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by many different versions of a compiler within the same distribution.  If the compiler is modified 

several times during the distribution’s release process, some packages may be  compiled with a 

version of the compiler that is neither the previous released version nor the final released version 

version—but is an intermediate instead.  What is more, compiler executables may incorporate 

material from other packages, which were themselves compiled with different versions of the 

compiler.

Distributions could easily make minor modifications to their processes to make DDC easier to 

apply.   Recording  the  information  necessary  to  accurately  reproduce  an  executable  is  one 

approach.   Another  approach  is  to  freeze  the  compiler  at  an  earlier  stage,  and  recompile 

everything so the executables are compiled using a single known version of the compiler.  Now 

that DDC has been demonstrated by this dissertation, compiler suppliers have a stronger rationale 

for recording the information necessary to recreate executables.

There are other issues with current Linux distributions that can be easily worked around for DDC, 

but can cause trouble for the unwary:

• Many  Linux  distributions  use  “prelink”,  which  modifies  the  files  of  executable 

commands and libraries of a running system to speed their later invocation.  This is not a 

problem as  long  as  the  files  are  captured  and compared using DDC  before they are 

changed by prelink.

• Many Linux distributions use  “ccache”,  a  system that  caches compilation results  and 

quickly replies with previous results if the inputs and compiler are “the same”.  If the 

caching system incorrectly determines that the compiler being invoked is “the same”, but 

is in fact different, then the wrong results will be used.  This would invalidate the results 
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if this mistake occurred during DDC.  This risk is easily eliminated by disabling such 

caches when performing DDC.

8.11 Finding errors and maliciously misleading code

DDC simply shows that source code corresponds to executable code (given some assumptions). 

Knowing that source code corresponds with an executable is valuable, since software developers 

are far more likely to review source code than an executable.  At the very least, developers must 

review some source code when they are preparing to change it.

This  does  not  make  source  code  analysis  trivial;  it  may  be  difficult  to  find  intentional 

vulnerabilities  in  large  and  complex  software.   But  it  does  tend  to  make  it  easier  to  find 

intentional vulnerabilities.  In particular, errors can be detected and resolved by traditional means 

as discussed in section 2.4.

But is it enough to ensure that the source code and executable correspond?  An attacker who can 

modify compiler  source  code  could  insert  maliciously  misleading  code,  that  is,  code that  is 

designed  to  appear to  be  correct  but  actually  does  something  malicious  instead.   The 

Obfuscated V contest [Horn2004], the Underhanded C contest [Binghamton2005], and the Linux 

kernel attack (discussed in section 2.6) all show that it is possible to write maliciously misleading 

code.  Williams also discusses methods for hiding code sot that it does not appear to be malicious 

[Williams2009].

The good news is that these public examples also suggest that simple measures can counter many 

of them.  Some examples use misleading formatting (e.g., text that looks like a comment but is 

not, or text that is highly indented so some text editors will not show it); these can be countered 

by using a “pretty printer” to reformat source code before review.  Some examples exploit buffer 
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overflows; these can be countered by using languages or  tools that  prevent buffer overflows. 

Some examples  use  widely-known “common mistakes”  for  the  given programming language 

(e.g.,  mistaking “=” for “==” in C); these can be countered by training human reviewers and 

using tools to highlight or forbid “confusing” constructs.  In the longer run, languages could be 

designed or modified to make hiding more difficult and/or make common mistakes less likely. 

For example, Java was specifically designed to make certain common errors in C impossible or 

less  likely.  In  any  case,  implementing  the  “trusting  trust”  attack  requires  some  subtle 

programming; the probability of its happening “by accident” is vanishingly small, and this makes 

it more difficult to hide as a simple error such as invoking the wrong operator.  Tools could be 

developed to search for maliciously misleading code, yet not released (as source code, executable, 

or a service) to the public.   Such unreleased tools could make it  difficult  for attackers to be 

confident that their attacks will go undetected.

8.12 Hardware

DDC  can  be  extended  to  hardware,  including  computer  hardware,  to  counter  the  risk  that 

hardware  tools  are  intentionally  subverted  to  produce  later  subverted  hardware  in  a  self-

perpetuating manner.

However, a few observations must be made.  First, what some people call “hardware” is actually 

software.  For example, all CPU microcode and a computer’s basic input/output system (BIOS) 

originates as software.  Since they are software, they can be handled the same way as any other 

software, including using DDC as described in the rest of this dissertation.
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Second,  DDC is  not  necessary  to  counter  direct  subversion  of  hardware  components,  or  to 

counter subversion of hardware by software in a way that does not self-perpetuate:

• If the threat is that a human will insert malicious logic into a human-readable hardware 

design, then one countermeasure is to review the designs, making sure that what is used 

in later steps is what was reviewed.

• If the threat is that a tool’s output may be subverted after it has left the tool, then if the 

tool  can  be  made  to  be  deterministic,  one  countermeasure  is  to  rerun  that  tool  and 

comparing the new results with the previous results to reveal any differences.  In multi-

step processes, rerun each step in sequence and determine if there is a difference.  In 

addition, consider comparing the actual results with the expected results18.  Performing 

such comparisons of hardware may require an “equality” operator; as discussed below, 

determining if hardware is equal can be more difficult than for software.

• If the threat is that a software executable may insert malicious logic when it processes a 

hardware design, one countermeasure is to review the software tool’s source code.  If the 

program’s executable may have been corrupted, but the source code is correct and the 

generation process for the executable is trusted, simply recompile the tool with the same 

circumstances  as  when  it  was  last  compiled  and  see  if  the  resulting  executable  is 

identical.

There is another threat, however, that is rarely discussed: What if hardware has been subverted so  

that it intentionally subverts the hardware implementation process of other (later) hardware, in a 

self-perpetuating way?  At this time, such indirect attacks seem far less likely:

18In practice, unexpected differences between the “actual” and “expected” hardware results may be 
frequent, due to issues such as incomplete information and errors, but such differences could be malicious.
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• Undetected hardware subversion of another hardware component’s development process 

is harder to do than for software.  For software this kind of subversion tends to be easier 

to do because the attacking software is typically at  a similar level  of  abstraction.   In 

contrast,  hardware tools used to implement other hardware are often at a much lower 

level  of  abstraction,  making it  more difficult  to  create  useful  automated triggers  and 

payloads in hardware tools that have a high probability of being useful in attacking the 

hardware design or  implementation process,  while  having a  low probability of  being 

detected.

It is particularly challenging to create hardware tools that intentionally and undetectably 

subvert only certain hardware made with them if the tool lacks a computer.  It is possible 

to  create  hardware  tools  that  subvert  only certain  products  made  with  them and not 

others, e.g., to insert lower-quality or subtly damaged tools so that the tools will work 

fine in many cases yet subtly fail when making the hardware to be subverted.  However, 

this  is  similar  to ordinary quality control  problems,  and might  be  detected by robust 

quality control and testing processes (though there is no guaranee of this).  In addition, 

there are usually grave limits  on the kinds of triggers and payloads that  can be used 

without using a computer.  In some cases an attacker could add a computer where one is 

not necessary or expected.

• There is often little need to implement such a complicated attack on hardware.  There are 

many other difficult-to-counter attacks at the hardware level which are much easier to 

perform.

Still, if undetected subversion of hardware by other hardware is considered a threat, then DDC 

can be used to help counter it, as long as the prerequisites of DDC are met.

132



Countering this attack may be especially relevant for 3-D printers that can reproduce many of 

their own parts.  An example of such a 3-D printer is the Replicating Rapid-prototyper (RepRap), 

a machine that can “print” many hardware items including many of the parts required to build a 

copy of the RepRap [Gaudin2008].  The primary goal of the RepRap project, according to its 

project website, is to “create and to give away a makes-useful-stuff machine that, among other 

things, allows its owner [to] cheaply and easily… make another such machine for someone else” 

[RepRap2009].

Many hardware components do not present much of an opportunity for creating self-perpetuating 

undetectable subversion (the trusting trust attack).  Large physical components that cannot be 

programmed can often be examined directly, and often do not involve the separation of “source” 

and “executable” that permit the hidden attacks countered by DDC.

Unfortunately, an integrated circuit (IC), whether it is part of a 3-D printer or not,  does present 

such a possibility.  ICs are typically very complex, difficult to analyze after-the-fact, and humans 

often do design and implement them using abstractions instead of directly examining the result. 

Thus, ICs are especially easy to use for hardware implementations of the trusting trust attack.

In theory, DDC can be applied to ICs to detect a hardware-based trusting trust attack.  However, 

note that there are some important challenges when applying DDC to ICs:

• Trusted compiler.  For DDC to work with hardware there must  be a separate trusted 

compiler.  Depending on what is being tested, it may be possible to implement this using 

a combination of hardware compiler, simulated (resulting) chip, and a chip simulator.
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• Equality operator.  For DDC to work on hardware, it needs an “equality” operator.  An 

equality operator may be particularly challenging to implement for complex ICs, but may 

be possible to gather enough information to determine if an IC was “equal to” another IC 

(real or virtual) with an acceptable level of probability.  Tools such as a scanning electron 

microscope,  scanning  transmission  electron  microscope  (STEM),  focused  ion  beam, 

and/or a tool that performed optical phase array shifting might be able to gather enough 

information  to  justify a  claim of  equality,  especially when used  with  varying  angles 

and/or positions.  These might be more successful if there were supplemented with other 

test  techniques,  such  as  techniques  that  check  electrical  connectivity  in  a  variety  of 

locations or techniques that performed parity checks of stored data.  It might be possible 

to use superposition to detect different phase changes through diffraction, but this may be 

too sensitive a test,  yielding many false difference reports.  Indeed, real ICs typically 

have small defects of various kinds, so any equality operator on ICs risks producing false 

reports that ICs are different even when they are, in practice, the same.

• Legal challenges for information access.  DDC requires detailed information, and for ICs 

the necessary information is often difficult to obtain legally.  In particular, DDC requires 

that  the  correct  hardware  results  be  known,  so  that  it  can  be  compared  to  the  real 

hardware.  This need for detailed information is less challenging for software; software 

developers  would  often  find  it  unacceptable  if  they couldn’t  see  the  bytes  that  their 

compilers produced.  In contrast, in IC development large amounts of IC data (including 

the actual layout of the ICs) is often kept proprietary from even the chip designers.  ICs 

may be routinely modified in their many manufacturing steps in ways not disclosed to the 

chip designers.  For example, many IC designers use libraries written using Verilog or 

Very High Speed Integrated Circuits (VHSIC) hardware description language (VHDL), 
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but the designs of these libraries (as shown by their design tools) may not be what are 

normally used on ICs produced with those libraries (in such cases the “real” library may 

be considered proprietary by the library creator).  Many ICs are built out of intellectual 

property  (IP)  cores  from  various  organizations  worldwide,  and  designers  may  be 

forbidden (by contract) to see detailed information about the implementation of certain IP 

cores.  In addition, because of quantum mechanical effects, at smaller scales there are 

corrections  that  some  companies  will  do  to  IC  layouts  or  wiring  that  designers  are 

forbidden (by contract) to see.  Many chip designers are unaware that what is actually on 

the ICs they designed may be intentionally different from what they designed; this lack of 

knowledge may be exacerbated because many IC designers are not near the foundries 

(and thus have fewer opportunities to discover these differences).  Should the use of DDC 

become important for ICs, such detailed information would need to be made available to 

someone who could perform DDC.

Finally, it is important to note that any application of DDC to hardware will only apply to that 

specific hardware component.  Thus, if IC #1 passes a DDC test, this does not mean that IC #2 

will pass it, even if both ICs were created at the same time.  This is true for software as well, but 

it is much easier to determine if two executables are identical.

Nevertheless, it appears that DDC could be applied to hardware, given the caveats and limitations 

listed above.

8.13 Complex libraries and frameworks

Modern programming languages typically include large programming libraries and frameworks. 

Reviewing all of this source code, if it were required, can be very difficult.  What is worse, if the 
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entirety of these large libraries and frameworks must be implemented by a trusted compiler, there 

may be few or no alternative compilers that can be used as a trusted compiler.

Thankfully, this does not render DDC useless.  The trusted compiler only needs to implement the 

functionality necessary to compiler the parent compiler; it does not need to implement all of the 

features of the parent nor the compiler-under-test.  In practice, compilers typically do  not need 

most of the functions of the libraries and frameworks they support.  In addition, compiler writers 

may decide to limit the functionality required to compile the compiler (e.g., so that the compiler 

is easier to port to a new platform or so that there are more trusted compilers that can be used for 

DDC).

8.14 How can an attacker counter DDC?

An important practical challenge for a defender is to ensure that an attacker cannot counter DDC 

as a technique for detecting the trusting trust attack.  To analyze this challenge, consider DDC 

from the point-of-view of an attacker who intends to perform a trusting trust attack  and avoid 

detection via DDC.  (This viewpoint will also address what happens when a trusted compiler is 

subverted.)

Fundamentally,  an attacker must  make at  least  one of the DDC assumptions false to prevent 

detection by DDC.  As an extreme example, imagine that the attacker has direct control over the 

DDC process.  In this case, the attacker could falsify the assumption that stage2 is generated by 

the DDC compilation process, by allowing the DDC process to complete, and then replacing the 

generated stage2 with the  compiler-under-test.   This  is  an extreme example,  however;  if  the 

execution of the DDC process is protected (so that the attacker cannot directly control it), an 

attacker will have difficulty falsifying many of of the DDC assumptions.
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One possibility would be to embed a subversion in the environment so that the compiler-under-

test that is extracted and compared is not the program that is actually run.  This would falsify the 

assumption that the executable being tested is the one that is actually used.  An environment can 

perform this  slight-of-hand by storing the “real” compiler  executable (e.g.,  in the filesystem) 

where it will be run, but providing a different “clean” executable when it is extracted for read-

only use.   This  slight-of-hand  can  be  countered  by  shutting  down  the  potentially-subverted 

environment and extracting the executable directly from storage.  Alternatively, an environment 

can store the “clean” executable in the filesystem, yet switch or modify the executable that is 

actually run.  One way to counter this latter attack is to expand the definition of “compiler” to 

include more of the environment, as described in section 8.8.  This requires more source code, but 

would reduce the number of components in the environment where these attacks can occur.  As 

the  number  of  environmental  components  covered  by DDC increase,  the  fewer  locations  an 

attacker can use to hide this subversion.  Even worse (from an attacker’s view), the attacker will 

often not know which environmental components will be checked this way by the defender, and 

implementing this trick is more difficult in some components than others.

From an attacker’s viewpoint, one of the best ways to overcome the DDC technique is to  also 

subvert the trusted compiler and/or environment that will be used in DDC, with exactly the same 

triggers and payloads that are included in the subverted compiler-under-test.  When this occurs, 

DDC will produce the same results.  However, the defender has a substantial advantage in this 

case:  the  attacker  typically  does  not typically  know  ahead  of  time  which  compiler(s)  and 

environment(s) will be used as trusted compilers or environments in DDC.  Indeed, the defender 

might not have made such a selection yet. 
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Thus, to subvert the trusted compiler or environment ahead of time, the attacker must subvert 

many compilers  and environments,  with the  same subversions  that  are  also inserted into the 

compiler-under-test.   What  is  worse,  these  other  compilers  and  environments  must  include 

trusting trust attacks on both themselves (so that they perpetuate) and on other compilers (so they 

can counter their use in DDC).  Since compilers may be used as trusted compilers to check on 

each other, and an attacker will often not know which compilers will be used in which role, in 

practice an attacker would need to insert triggers and payloads into a large set of compilers and/or 

environments  that  affect  the  entire  set  of  compilers  and/or  environments.   Note  that  these 

subversions must have exactly the same effect when compiling the parent compiler and compiler-

under-test; even if the trusted compiler is subverted—if those subversions will have a different 

effect during DDC, then that difference will be detected by DDC.  If the attacker fails to subvert 

or maintain the subversion of the specific trusted compiler(s) and trusted environment(s) used by 

the defender for DDC, and the other DDC assumptions also hold, the trusting trust attack will be 

revealed to the defender.  The defender may use multiple trusted compilers and environments and 

apply DDC multiple times; in such cases, the attacker must successfully subvert  all of them to 

avoid detection.  The defender can even choose to build an internal compiler and/or environment 

for DDC that isn’t available to the public; the defender could even keep their existence a secret (at 

least until they are used for DDC). In short, it be extremely difficult for an attacker to subvert all 

these systems; an attacker would need to learn of their existence and successfully subvert all of 

them before the defender uses them for DDC.

In many computer security problems the attacker tends to have an advantage over the defender, 

because the defender must defend many components while the attacker only needs to subvert one 

or a few components.  In this case, however, the defender has the advantage; the attacker must 

subvert a potentially large set of compilers and environments, while the defender merely needs to 

138



protect the one or the few that are actually used for DDC.  From the defender’s point-of-view this 

is a welcome change.
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9 Conclusions and ramifications

This dissertation has shown that the trusting trust attack can be countered.  Before this work 

began, the trusting trust attack had almost become an axiom of computer security, since many 

believed a successful attack to be undetectable.  Although others had posted the idea of DDC 

before  this  work began,  it  had only been described in a few sentences  at  most,  and only in 

obscure places.  DDC had not even been given a name when this work began.  This work has 

explained  DDC  in  detail,  provided  a  formal  proof  (with  formalized  assumptions),  and 

demonstrated its use (including with a widely-used C compiler).

The  DDC  technique  only  shows  that  the  source  code  corresponds  with  a  given  compiler’s 

executable, i.e., that nothing is hidden.  The executable may have errors or malevolent code; DDC 

simply ensures that these  can be found by examining the source code.  This is still extremely 

valuable, since source code is easier and more likely to be reviewed than generated executable 

code.  Thus, while the DDC technique does not eliminate the need for source code review, it does 

make source code review much more meaningful.

Passing  the  DDC  test  when  the  trusted  compiler  and  environment  is  not  proven  is  not  a 

mathematical  proof,  but  more like  a  legal  one.   The DDC technique assumes that  the  DDC 

process (including trusted compiler cT and the environments) does not have triggers or payloads 

that apply to the source code being compiled.  In most practical cases, this assumption will not be 

formally proved.  However, the DDC test can be made as rigorous as desired by decreasing the 
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likelihood (e.g.,  through diversity)  that  the DDC process has the same triggers and payloads. 

Multiple diverse DDC tests, using different trusted compilers, can strengthen the evidence even 

further.   Thus, a defender can easily make it  extremely unlikely that an attacker could avoid 

detection by the DDC technique.

The DDC technique has many strengths: it can be completely automated, applied to any compiled 

language  (including  common  languages  like  C),  and  does  not  require  the  use  of  complex 

mathematical  proof  techniques.   Second-source compilers and environments are desirable  for 

other reasons, so they are often already available, and if not they are also relatively easy to create 

(since high performance is unnecessary).  Some unintentional compiler defects are also detected 

by the technique.  The DDC technique can be easily expanded to cover all of the software running 

on a system (including the operating system kernel, bootstrap software, libraries, microcode, and 

so on) as long as its source code is available.

As with any approach, the DDC technique has limitations.  The source code for the compiler 

being tested and its parent must be available to the tester, and the results are more useful to those 

who have access to the source code of what was tested (since only they can verify that the source 

code does not include malicious code).  This means that the DDC technique is most useful for 

countering the trusting trust  attack when applied to open source software and other software 

whose source code is publicly available19.  Since the technique requires two compilers to agree on 

semantics,  DDC  is  easier  to  apply  and  can  give  stronger  results  for  compilers  of  popular 

languages where there is a public language specification and where no patents inhibit the creation 

of  multiple  implementations.   The technique  is  far  simpler  if  the  compiler  being  tested was 

19It could be argued that the existence of the DDC technique gives open source software and other 
software whose source code is publicly available a decisive security advantage, since only such software 
can be examined at the source code level by anyone to determine if the corresponding executable is 
malicious.
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designed to be portable (e.g.,  by not using nonstandard extensions).   DDC can be applied to 

microcode and hardware specification data as well.   DDC can be applied to hardware,  but  it 

requires  an “equality”  operation  (a  challenging operation  to  implement  on ICs)  and detailed 

information that is often unavailable for ICs.

Future potential work includes recompiling an entire operating system as the compiler-under-test 

cA, relaxing the requirement for being exactly equal, and demonstrating DDC with a more diverse 

environment (e.g., by using a much older operating system and different CPU architecture).

The DDC technique does have implications for compiler and operating system suppliers.  For 

example,  suppliers  should  record  all  the  detailed  information  necessary  to  recompile  their 

compiler/operating  system and produce  the  same  bit  sequence,  and  avoid  using  nonstandard 

language extensions in the lowest-level components.  This would make it easier to apply DDC 

later.  Suppliers should consider releasing their software source code, at least to certain parties, so 

that others can check that the source and executable correspond.  Only parties with the source 

code can use DDC to perform this check, so increasing the number of parties with source code 

access (say,  as open source software) increases the number of parties who can independently 

check for the trusting trust attack and thus decreases the risk of undetected attack.  Suppliers 

should follow the guidelines as described further in appendix D.

The DDC technique does have potential policy implications.  To protect themselves and their 

citizenry, governments could require that compilers or compilation environments may only be 

used to develop critical software (such as those in critical infrastructure and/or national security 

systems) if  they meet  requirements that  enable governments to perform DDC.  For example, 

governments could require that they receive all of the source code (including build instructions) 

necessary to rebuild such compilers or compilation environments, and governments could require 
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that this source code must be sufficiently portable so that the compiler or environment can be 

built  with  an alternative  trusted compiler  and environment.   Multiple  compilers are easier  to 

acquire for standardized languages, so governments could insist on the use of standard languages 

to implement both critical software and the compilers used to generate code for them.  Such 

languages would be preferably implemented by multiple vendors, which is much easier to do if 

the languages are specified in open standards not encumbered by patents, which could also be 

mandated.  Governments could eliminate software patents (in cases where they permit them) to 

eliminate one inhibition for creating alternative trusted compilers (for more on software patents, 

see  [Klemens2008],  [Bessen2004],  [Bessen2008],  and  [End2008]).   Organizations  (such  as 

governments) could even establish groups to perform DDC and report the cryptographic hashes 

of the executables and source that correspond.

In conclusion, the trusting trust attack can be detected and effectively countered by the Diverse 

Double-Compiling (DDC) technique.
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Appendix A: Lisp results

This appendix presents the detailed results of applying DDC to the Lisp compilers described in 

[Goerigk2002].  See section 7.2 for more information.  This appendix primarily uses traditional 

S-expression  notation;  see  http://www.dwheeler.com/readable for  information  on  alternative 

notations for S-expressions that are easier to read.

A.1 Source code for correct compiler

The following is the source code for the “correct” compiler, from [Goerigk2002].  It is released 

under the GNU General Public License (GPL):

((DEFUN OPERATORP (NAME)
  (MEMBER NAME
   '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM CONS
     EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
 (DEFUN COMPILE-FORMS (FORMS ENV TOP)
  (IF (CONSP FORMS)
   (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
    (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
   NIL))
 (DEFUN COMPILE-FORM (FORM ENV TOP)
  (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
   (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
    (IF (SYMBOLP FORM)
     (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
     (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
      (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
       (IF (EQUAL (CAR FORM) 'IF)
        (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
         (LIST1
          (CONS 'IF
           (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
            (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
        (IF (OPERATORP (CAR FORM))
         (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
          (LIST1 (LIST2 'OPR (CAR FORM))))
         (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
          (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
 (DEFUN COMPILE-DEF (DEF)
  (LIST1
   (CONS 'DEFCODE
    (LIST2 (CADR DEF)
     (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
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      (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
 (DEFUN COMPILE-DEFS (DEFS)
  (IF (CONSP DEFS) (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS)))
   NIL))
 (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
  (APPEND (COMPILE-DEFS DEFS)
   (LIST1
    (APPEND (COMPILE-FORM MAIN VARS 0) (LIST1 (LIST2 'POP (LEN VARS))))))))

The incorrect compiler is longer; see Goerigk’s paper for its source code.

A.2 Compiled code for correct compiler

Here’s the compiled code for the correct compiler (when it compiles itself):

((DEFCODE OPERATORP
  ((PUSHV 0)
   (PUSHC
    (CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM CONS
     EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2))
   (OPR MEMBER) (POP 1)))
 (DEFCODE COMPILE-FORMS
  ((PUSHV 2) (OPR CONSP)
   (IF
    ((PUSHV 2) (OPR CAR) (PUSHV 2) (PUSHV 2) (CALL COMPILE-FORM) (PUSHV 3)
     (OPR CDR) (PUSHV 3) (PUSHV 3) (OPR 1+) (CALL COMPILE-FORMS) (OPR APPEND))
    ((PUSHC NIL)))
   (POP 3)))
 (DEFCODE COMPILE-FORM
  ((PUSHV 2) (PUSHC NIL) (OPR EQUAL)
   (IF ((PUSHC (PUSHC NIL)) (OPR LIST1))
    ((PUSHV 2) (PUSHC T) (OPR EQUAL)
     (IF ((PUSHC (PUSHC T)) (OPR LIST1))
      ((PUSHV 2) (OPR SYMBOLP)
       (IF
        ((PUSHC PUSHV) (PUSHV 1) (PUSHV 4) (PUSHV 4) (OPR MEMBER) (OPR LEN)
         (OPR 1-) (OPR +) (OPR LIST2) (OPR LIST1))
        ((PUSHV 2) (OPR ATOM)
         (IF ((PUSHC PUSHC) (PUSHV 3) (OPR LIST2) (OPR LIST1))
          ((PUSHV 2) (OPR CAR) (PUSHC QUOTE) (OPR EQUAL)
           (IF ((PUSHC PUSHC) (PUSHV 3) (OPR CADR) (OPR LIST2) (OPR LIST1))
            ((PUSHV 2) (OPR CAR) (PUSHC IF) (OPR EQUAL)
             (IF
              ((PUSHV 2) (OPR CADR) (PUSHV 2) (PUSHV 2) (CALL COMPILE-FORM)
               (PUSHC IF) (PUSHV 4) (OPR CADDR) (PUSHV 4) (PUSHV 4)
               (CALL COMPILE-FORM) (PUSHV 5) (OPR CADDDR) (PUSHV 5) (PUSHV 5)
               (CALL COMPILE-FORM) (OPR LIST2) (OPR CONS) (OPR LIST1)
               (OPR APPEND))
              ((PUSHV 2) (OPR CAR) (CALL OPERATORP)
               (IF
                ((PUSHV 2) (OPR CDR) (PUSHV 2) (PUSHV 2) (CALL COMPILE-FORMS)
                 (PUSHC OPR) (PUSHV 4) (OPR CAR) (OPR LIST2) (OPR LIST1)
                 (OPR APPEND))
                ((PUSHV 2) (OPR CDR) (PUSHV 2) (PUSHV 2) (CALL COMPILE-FORMS)
                 (PUSHC CALL) (PUSHV 4) (OPR CAR) (OPR LIST2) (OPR LIST1)
                 (OPR APPEND)))))))))))))))
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   (POP 3)))
 (DEFCODE COMPILE-DEF
  ((PUSHC DEFCODE) (PUSHV 1) (OPR CADR) (PUSHV 2) (OPR CADDDR) (PUSHV 3)
   (OPR CADDR) (PUSHC 0) (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR CADDR)
   (OPR LEN) (OPR LIST2) (OPR LIST1) (OPR APPEND) (OPR LIST2) (OPR CONS)
   (OPR LIST1) (POP 1)))
 (DEFCODE COMPILE-DEFS
  ((PUSHV 0) (OPR CONSP)
   (IF
    ((PUSHV 0) (OPR CAR) (CALL COMPILE-DEF) (PUSHV 1) (OPR CDR)
     (CALL COMPILE-DEFS) (OPR APPEND))
    ((PUSHC NIL)))
   (POP 1)))
 (DEFCODE COMPILE-PROGRAM
  ((PUSHV 2) (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0)
   (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2) (OPR LIST1)
   (OPR APPEND) (OPR LIST1) (OPR APPEND) (POP 3)))
 ((PUSHV 2) (PUSHV 2) (PUSHV 2) (CALL COMPILE-PROGRAM) (POP 3)))

A.3 Compilation of factorial function

To demonstrate that both the correct and incorrect compilers could process ordinary programs 

correctly, a simple factorial function was used:

(defun fac (n) (if (equal n 0) 1 (* n (fac (1- n)))))

This function may be easier to understand when re-written using sweet-expression version 0.2 

notation, where f(...) is the same as (f …), {x op y} is the same as (op x y), and indentation is 

meaningful [Wheeler2009s]:

defun fac (n)
if equal(n 0)

1
{n * fac(1-(n))}

This  function  was  compiled  by  both  the  correct  and  incorrect  compiler  executables;  both 

produced exactly the same machine code output:

(((DEFCODE FAC
   ((PUSHV 0) (PUSHC 0) (OPR EQUAL)
    (IF ((PUSHC 1)) ((PUSHV 0) (PUSHV 1) (OPR 1-) (CALL FAC) (OPR *)))
    (POP 1)))
  ((PUSHV 0) (CALL FAC) (POP 1))))

A.4 Compilation of login function

However, when given the stub “login” program:
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((defun login () '(This is the CORRECT login)))

The correct compiler produces one result:

(((DEFCODE LOGIN ((PUSHC (THIS IS THE CORRECT LOGIN)) (POP 0)))
  ((CALL LOGIN) (POP 0))))

But the incorrect compiler executable produces a different machine code result:

(((DEFCODE LOGIN ((PUSHC (THIS IS THE INCORRECT LOGIN)) (POP 0)))
  ((CALL LOGIN) (POP 0))))

A.5 DDC application

When the  DDC technique  was  applied,  using  the  underlying  Common  Lisp  implementation 

(clisp) as trusted compiler cT, the executable resulting from DDC (stage2) was identical to the 

regenerated correct compiler executable (as expected), and it was  not the same as the incorrect 

compiler executable (as expected).  The following is a unified diff (“diff -u”) of the DDC result 

(stage2)  and  the  incorrect  compiler  executable,  where  “+”  in  the  first  column  indicates  an 

addition in the incorrect compiler result that is not in the DDC result:

@@ -52,8 +52,277 @@
      (CALL COMPILE-DEFS) (OPR APPEND))
     ((PUSHC NIL)))
    (POP 1)))
+ (DEFCODE LOGIN-SOURCE
+  ((PUSHC ((DEFUN LOGIN NIL '(THIS IS THE CORRECT LOGIN)))) (POP 0)))
+ (DEFCODE COMPILER-SOURCE
+  ((PUSHC
+    ((DEFUN OPERATORP (NAME)
+      (MEMBER NAME
+       '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM
+         CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+     (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+      (IF (CONSP FORMS)
+       (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+        (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+       NIL))
+     (DEFUN COMPILE-FORM (FORM ENV TOP)
+      (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+       (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+        (IF (SYMBOLP FORM)
+         (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+         (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+          (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+           (IF (EQUAL (CAR FORM) 'IF)
+            (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+             (LIST1
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+              (CONS 'IF
+               (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+                (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
+            (IF (OPERATORP (CAR FORM))
+             (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+              (LIST1 (LIST2 'OPR (CAR FORM))))
+             (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+              (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+     (DEFUN COMPILE-DEF (DEF)
+      (LIST1
+       (CONS 'DEFCODE
+        (LIST2 (CADR DEF)
+         (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+          (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+     (DEFUN COMPILE-DEFS (DEFS)
+      (IF (CONSP DEFS)
+       (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+     (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+      (APPEND (COMPILE-DEFS DEFS)
+       (LIST1
+        (APPEND (COMPILE-FORM MAIN VARS 0)
+         (LIST1 (LIST2 'POP (LEN VARS)))))))))
+   (POP 0)))
+ (DEFCODE SUBST
+  ((PUSHV 1) (PUSHV 1) (OPR EQUAL)
+   (IF ((PUSHV 2))
+    ((PUSHV 0) (OPR ATOM)
+     (IF ((PUSHV 0))
+      ((PUSHV 2) (PUSHV 2) (PUSHV 2) (OPR CAR) (CALL SUBST) (PUSHV 3) (PUSHV 3)
+       (PUSHV 3) (OPR CDR) (CALL SUBST) (OPR CONS)))))
+   (POP 3)))
  (DEFCODE COMPILE-PROGRAM
-  ((PUSHV 2) (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0)
-   (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2) (OPR LIST1)
-   (OPR APPEND) (OPR LIST1) (OPR APPEND) (POP 3)))
+  ((PUSHV 2) (CALL COMPILER-SOURCE) (OPR EQUAL)
+   (IF
+    ((PUSHC
+      ((DEFUN OPERATORP (NAME)
+        (MEMBER NAME
+         '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM
+           CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+       (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+        (IF (CONSP FORMS)
+         (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+          (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+         NIL))
+       (DEFUN COMPILE-FORM (FORM ENV TOP)
+        (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+         (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+          (IF (SYMBOLP FORM)
+           (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+           (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+            (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+             (IF (EQUAL (CAR FORM) 'IF)
+              (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+               (LIST1
+                (CONS 'IF
+                 (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+                  (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
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+              (IF (OPERATORP (CAR FORM))
+               (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+                (LIST1 (LIST2 'OPR (CAR FORM))))
+               (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+                (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+       (DEFUN COMPILE-DEF (DEF)
+        (LIST1
+         (CONS 'DEFCODE
+          (LIST2 (CADR DEF)
+           (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+            (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+       (DEFUN COMPILE-DEFS (DEFS)
+        (IF (CONSP DEFS)
+         (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+       (DEFUN LOGIN-SOURCE NIL
+        '((DEFUN LOGIN NIL '(THIS IS THE CORRECT LOGIN))))
+       (DEFUN COMPILER-SOURCE NIL
+        '((DEFUN OPERATORP (NAME)
+           (MEMBER NAME
+            '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP
+              ATOM CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+          (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+           (IF (CONSP FORMS)
+            (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+             (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+            NIL))
+          (DEFUN COMPILE-FORM (FORM ENV TOP)
+           (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+            (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+             (IF (SYMBOLP FORM)
+              (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+              (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+               (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+                (IF (EQUAL (CAR FORM) 'IF)
+                 (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+                  (LIST1
+                   (CONS 'IF
+                    (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+                     (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
+                 (IF (OPERATORP (CAR FORM))
+                  (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+                   (LIST1 (LIST2 'OPR (CAR FORM))))
+                  (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+                   (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+          (DEFUN COMPILE-DEF (DEF)
+           (LIST1
+            (CONS 'DEFCODE
+             (LIST2 (CADR DEF)
+              (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+               (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+          (DEFUN COMPILE-DEFS (DEFS)
+           (IF (CONSP DEFS)
+            (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+          (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+           (APPEND (COMPILE-DEFS DEFS)
+            (LIST1
+             (APPEND (COMPILE-FORM MAIN VARS 0)
+              (LIST1 (LIST2 'POP (LEN VARS)))))))))
+       (DEFUN SUBST (NEW OLD TREE)
+        (IF (EQUAL OLD TREE) NEW
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+         (IF (ATOM TREE) TREE
+          (CONS (SUBST NEW OLD (CAR TREE)) (SUBST NEW OLD (CDR TREE))))))
+       (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+        (IF (EQUAL DEFS (COMPILER-SOURCE))
+         (APPEND (COMPILE-DEFS (SUBST '2000 (+ 1999 1) '2000))
+          (LIST1
+           (APPEND (COMPILE-FORM MAIN VARS 0)
+            (LIST1 (LIST2 'POP (LEN VARS))))))
+         (IF (EQUAL DEFS (LOGIN-SOURCE))
+          (APPEND
+           (COMPILE-DEFS '((DEFUN LOGIN NIL '(THIS IS THE INCORRECT LOGIN))))
+           (LIST1
+            (APPEND (COMPILE-FORM MAIN VARS 0)
+             (LIST1 (LIST2 'POP (LEN VARS))))))
+          (APPEND (COMPILE-DEFS DEFS)
+           (LIST1
+            (APPEND (COMPILE-FORM MAIN VARS 0)
+             (LIST1 (LIST2 'POP (LEN VARS)))))))))))
+     (PUSHC 1999) (PUSHC 1) (OPR +)
+     (PUSHC
+      ((DEFUN OPERATORP (NAME)
+        (MEMBER NAME
+         '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP ATOM
+           CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+       (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+        (IF (CONSP FORMS)
+         (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+          (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+         NIL))
+       (DEFUN COMPILE-FORM (FORM ENV TOP)
+        (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+         (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+          (IF (SYMBOLP FORM)
+           (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+           (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+            (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+             (IF (EQUAL (CAR FORM) 'IF)
+              (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+               (LIST1
+                (CONS 'IF
+                 (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+                  (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
+              (IF (OPERATORP (CAR FORM))
+               (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+                (LIST1 (LIST2 'OPR (CAR FORM))))
+               (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+                (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+       (DEFUN COMPILE-DEF (DEF)
+        (LIST1
+         (CONS 'DEFCODE
+          (LIST2 (CADR DEF)
+           (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+            (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+       (DEFUN COMPILE-DEFS (DEFS)
+        (IF (CONSP DEFS)
+         (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+       (DEFUN LOGIN-SOURCE NIL
+        '((DEFUN LOGIN NIL '(THIS IS THE CORRECT LOGIN))))
+       (DEFUN COMPILER-SOURCE NIL
+        '((DEFUN OPERATORP (NAME)
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+           (MEMBER NAME
+            '(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1- 1+ LEN SYMBOLP CONSP
+              ATOM CONS EQUAL APPEND MEMBER ASSOC + - * LIST1 LIST2)))
+          (DEFUN COMPILE-FORMS (FORMS ENV TOP)
+           (IF (CONSP FORMS)
+            (APPEND (COMPILE-FORM (CAR FORMS) ENV TOP)
+             (COMPILE-FORMS (CDR FORMS) ENV (1+ TOP)))
+            NIL))
+          (DEFUN COMPILE-FORM (FORM ENV TOP)
+           (IF (EQUAL FORM 'NIL) (LIST1 '(PUSHC NIL))
+            (IF (EQUAL FORM 'T) (LIST1 '(PUSHC T))
+             (IF (SYMBOLP FORM)
+              (LIST1 (LIST2 'PUSHV (+ TOP (1- (LEN (MEMBER FORM ENV))))))
+              (IF (ATOM FORM) (LIST1 (LIST2 'PUSHC FORM))
+               (IF (EQUAL (CAR FORM) 'QUOTE) (LIST1 (LIST2 'PUSHC (CADR FORM)))
+                (IF (EQUAL (CAR FORM) 'IF)
+                 (APPEND (COMPILE-FORM (CADR FORM) ENV TOP)
+                  (LIST1
+                   (CONS 'IF
+                    (LIST2 (COMPILE-FORM (CADDR FORM) ENV TOP)
+                     (COMPILE-FORM (CADDDR FORM) ENV TOP)))))
+                 (IF (OPERATORP (CAR FORM))
+                  (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+                   (LIST1 (LIST2 'OPR (CAR FORM))))
+                  (APPEND (COMPILE-FORMS (CDR FORM) ENV TOP)
+                   (LIST1 (LIST2 'CALL (CAR FORM))))))))))))
+          (DEFUN COMPILE-DEF (DEF)
+           (LIST1
+            (CONS 'DEFCODE
+             (LIST2 (CADR DEF)
+              (APPEND (COMPILE-FORM (CADDDR DEF) (CADDR DEF) 0)
+               (LIST1 (LIST2 'POP (LEN (CADDR DEF)))))))))
+          (DEFUN COMPILE-DEFS (DEFS)
+           (IF (CONSP DEFS)
+            (APPEND (COMPILE-DEF (CAR DEFS)) (COMPILE-DEFS (CDR DEFS))) NIL))
+          (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+           (APPEND (COMPILE-DEFS DEFS)
+            (LIST1
+             (APPEND (COMPILE-FORM MAIN VARS 0)
+              (LIST1 (LIST2 'POP (LEN VARS)))))))))
+       (DEFUN SUBST (NEW OLD TREE)
+        (IF (EQUAL OLD TREE) NEW
+         (IF (ATOM TREE) TREE
+          (CONS (SUBST NEW OLD (CAR TREE)) (SUBST NEW OLD (CDR TREE))))))
+       (DEFUN COMPILE-PROGRAM (DEFS VARS MAIN)
+        (IF (EQUAL DEFS (COMPILER-SOURCE))
+         (APPEND (COMPILE-DEFS (SUBST '2000 (+ 1999 1) '2000))
+          (LIST1
+           (APPEND (COMPILE-FORM MAIN VARS 0)
+            (LIST1 (LIST2 'POP (LEN VARS))))))
+         (IF (EQUAL DEFS (LOGIN-SOURCE))
+          (APPEND
+           (COMPILE-DEFS '((DEFUN LOGIN NIL '(THIS IS THE INCORRECT LOGIN))))
+           (LIST1
+            (APPEND (COMPILE-FORM MAIN VARS 0)
+             (LIST1 (LIST2 'POP (LEN VARS))))))
+          (APPEND (COMPILE-DEFS DEFS)
+           (LIST1
+            (APPEND (COMPILE-FORM MAIN VARS 0)
+             (LIST1 (LIST2 'POP (LEN VARS)))))))))))
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+     (CALL SUBST) (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0)
+     (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2)
+     (OPR LIST1) (OPR APPEND) (OPR LIST1) (OPR APPEND))
+    ((PUSHV 2) (CALL LOGIN-SOURCE) (OPR EQUAL)
+     (IF
+      ((PUSHC ((DEFUN LOGIN NIL '(THIS IS THE INCORRECT LOGIN))))
+       (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0) (CALL COMPILE-FORM)
+       (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2) (OPR LIST1) (OPR APPEND)
+       (OPR LIST1) (OPR APPEND))
+      ((PUSHV 2) (CALL COMPILE-DEFS) (PUSHV 1) (PUSHV 3) (PUSHC 0)
+       (CALL COMPILE-FORM) (PUSHC POP) (PUSHV 4) (OPR LEN) (OPR LIST2)
+       (OPR LIST1) (OPR APPEND) (OPR LIST1) (OPR APPEND)))))
+   (POP 3)))
  ((PUSHV 2) (PUSHV 2) (PUSHV 2) (CALL COMPILE-PROGRAM) (POP 3)))
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Appendix B: Detailed GCC results

Once the corrected GCC build process was used, DDC produced bit-for-bit identical results with 

the compiler-under-test, as expected.  The source code sA of GCC version 3.0.4 was stored in a 

gzipped tarball file, gcc-3.0.4.tar.gz.  This file has the following key statistics:

• Length: 18435440

• SHA-1 hash: 105e 1f41 7384 657d d921 a7dd 2110 d36b fa1c 6c5f

• SHA-256 hash: 0274 3ff2 d4d1 1aac f04d 496f ce5f 64aa b3fe aa34 c8ee 8f16 08d5 d7ce 

8950 f13f

Table 5 shows key statistics for both the compiler-under-test cA and the one generated by DDC. 

Since the results were identical, the results are only listed once.  The key statistics given here are 

the length (as a decimal number), the SHA-1 cryptographic hash, and the SHA-512 cryptographic 

hash (the hashes are shown as hexadecimal numbers).  The resulting GCC compiler is actually a 

set of files, instead of a single file; for purposes of this experiment, the files are:

• cc1: GCC C compiler.  This is the “real” C compiler and is the primary focus of the 

demonstration.

• xgcc (gcc): Driver.  The GCC C compiler is typically invoked through the “gcc” driver. 

This driver invokes the preprocessor, “real” compiler (cc1), assembler, linker, and so.  It 

is named “xgcc” before it is installed.

• cpp0:  C macro preprocessor;  this  is  the  “real”  preprocessor.   Note  that  this  is  not  a 

separate file in later versions of GCC, due to GCC design changes.

• tradcpp0: Traditional C macro preprocessor.
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• cpp: Driver for C macro preprocessor.

• collect2: Pre-linker to call initialization functions.  GCC uses collect2 to arrange to call 

initialization (constructor) functions at start time.

• libgcc_s.so: Run-time shared support  library.   GCC generates calls to routines in this 

library  automatically,  whenever  it  needs  to  perform  some  operation  that  is  too 

complicated for inline code.

Table 5: Statistics for GCC C compiler, both compiler-under-test and DDC result
Component Statistic Value

cc1 (C 
compiler)

Length 6247750

SHA-1 47b17dc20ef30e67675be329e8d107dfd0eb708b

SHA-512 5f5c9e29d01d8db21a1425cbfc9acc60d57388bba82ab5040eca8e97
b2fc0f54d131b457d53897ba2de2760d6f8b6ea34b165366478bba12
f92718a119a1caec

xgcc / gcc 
(driver)

Length 260862

SHA-1 5f275a8f2ee4b87067128481026ece45878d550d

SHA-512 b43c9382db05430672a6449dcc53957982779557bb841b80ff2f9472
5daf11bebc36a3c451b3ec6e78cbda45e2ace0694cfa269f64a0acfa35
0914b12a1522f0

cpp0 (C macro 
preprocessor)

Length 357174

SHA-1 076c89f42e5fab8b4165d69208094d6d696f23aa

SHA-512 5b68abb2fa0e59c3d2fb88ce8c241aac7368c033bb0cd76a5d9f29a8b
adbbdbe419b0e53a69d06ae7eb2fdb3d47d09b4cb83ad647a316502a
731929685d7df33

tradcpp0 
(Traditional C 
macro 
preprocessor)

Length 207220

SHA-1 46e674ecfcf6c36d3d31033153477a6bd843fba9

SHA-512 85baf0ef43a724126f0a73cfe69d8995d8023e3280e20457db8c6410e
b48298726c38208feb1cc2ee5e2c48f81789ad2bce7e6ee2a446bac99
e5d8fbc9c224ce

cpp (driver for 
C macro 
preprocessor)

Length 262885

SHA-1 ab8323c1e61707037ff182217e42c9098ea755f0

SHA-512 902a81cc15ccc7474005b40a7d0c23c5a87e46194d593a9de0656e0d
6f6987b1c627ec1f7e7a844db15d7652cbfddce4fff7c26bad40e887ed
bc81aa89c69f33

collect2 (pre- Length 322865
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Component Statistic Value
link) SHA-1 887e580751d46de4614b40211662c5738344892f

SHA-512 606561a1a5bb43b9c65e0285f9c05cf4033ba6f91d2ef324c9f9d40bb
6def2c12e3b3e512afe2443c569e76d4a150118c1dc2c665b3869f849
1eb5058157b490

libgcc_s.so 
(support 
library)

Length 195985

SHA-1 6819e0540e8f06dcff4e12023f1a460637c163b5

SHA-512 f540b15f36191758392cdbfe83e3c3d3c4b7d43daace67359b6fe980e
c15d4f47d3006c6c4aac9b94ced6ed02c1a59df5f238f9a0912fa3596
5d74c621c3b97d
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Appendix C: Model results

In classical logic an inconsistent set of assumptions (such as simultaneously claiming that “a=b” 

and “a≠b”) can be used to prove any claim.  Therefore, before accepting a proof based on a set of 

assumptions, it is important to show that the set of assumptions is consistent.  Thankfully, there is 

a relatively easy method to show if  a  set  of  assumptions is consistent:  if  a  set  of  first-order 

statements are simultaneously satisfiable, then that set is consistent (see page 410 of [Stoll1979] 

for a proof of this statement).

The set of assumptions in each of the three proofs of chapter 5 have been shown by the mace4 

tool  to  be  satisfiable.   This  means  that,  for  each  proof,  mace4  can  create  a  model  that 

simultaneously satisfies the set of assumptions.  Therefore, the assumptions used in each proof 

are consistent.  For another example of a project that used mace4 to check for consistency, see 

[Schwitter2006].

The following sections show the models found by mace4.  These are, of course, not the only 

possible models, but the existence of any model for each proof shows that the proof assumptions 

are consistent.   These models are shown in mace4 “cooked” format.   First,  possible number 

assignments for constant terms are shown.  Functions are shown as the function name, a set of 

inputs, “=”, and its output for that set of inputs.  Predicates are shown with their inputs preceded 

by “-” (if the result is false) or by a blank (if the result is true).  All of these models are of domain 

size two (that is, all terms are mapped to either 0 or 1).  These particular models are trivial (e.g., 

all constants are mapped to 0), but that doesn’t matter; all that matters is that a model can be 

found, proving that the assumptions are consistent.
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9.1 Proof #1 model

The following model satisfies all of the assumptions of proof #1.

cT = 0.
e1 = 0.
e1effects = 0.
e2 = 0.
e2effects = 0.
eArun = 0.
lsA = 0.
lsP = 0.
sA = 0.
sP = 0.
stage1 = 0.
stage2 = 0.

compile(0,0,0,0,0) = 0.
compile(0,0,0,0,1) = 0.
compile(0,0,0,1,0) = 0.
compile(0,0,0,1,1) = 0.
compile(0,0,1,0,0) = 0.
compile(0,0,1,0,1) = 0.
compile(0,0,1,1,0) = 0.
compile(0,0,1,1,1) = 0.
compile(0,1,0,0,0) = 0.
compile(0,1,0,0,1) = 0.
compile(0,1,0,1,0) = 0.
compile(0,1,0,1,1) = 0.
compile(0,1,1,0,0) = 0.
compile(0,1,1,0,1) = 0.
compile(0,1,1,1,0) = 0.
compile(0,1,1,1,1) = 0.
compile(1,0,0,0,0) = 0.
compile(1,0,0,0,1) = 0.
compile(1,0,0,1,0) = 0.
compile(1,0,0,1,1) = 0.
compile(1,0,1,0,0) = 0.
compile(1,0,1,0,1) = 0.
compile(1,0,1,1,0) = 0.
compile(1,0,1,1,1) = 0.
compile(1,1,0,0,0) = 0.
compile(1,1,0,0,1) = 0.
compile(1,1,0,1,0) = 0.
compile(1,1,0,1,1) = 0.
compile(1,1,1,0,0) = 0.
compile(1,1,1,0,1) = 0.
compile(1,1,1,1,0) = 0.
compile(1,1,1,1,1) = 0.

  exactly_correspond(0,0,0,0).
- exactly_correspond(0,0,0,1).
- exactly_correspond(0,0,1,0).
- exactly_correspond(0,0,1,1).
- exactly_correspond(0,1,0,0).
- exactly_correspond(0,1,0,1).
- exactly_correspond(0,1,1,0).
- exactly_correspond(0,1,1,1).
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- exactly_correspond(1,0,0,0).
- exactly_correspond(1,0,0,1).
- exactly_correspond(1,0,1,0).
- exactly_correspond(1,0,1,1).
- exactly_correspond(1,1,0,0).
- exactly_correspond(1,1,0,1).
- exactly_correspond(1,1,1,0).
- exactly_correspond(1,1,1,1).

  accurately_translates(0,0,0,0,0,0).
- accurately_translates(0,0,0,0,0,1).
- accurately_translates(0,0,0,0,1,0).
- accurately_translates(0,0,0,0,1,1).
  accurately_translates(0,0,0,1,0,0).
- accurately_translates(0,0,0,1,0,1).
- accurately_translates(0,0,0,1,1,0).
- accurately_translates(0,0,0,1,1,1).
- accurately_translates(0,0,1,0,0,0).
- accurately_translates(0,0,1,0,0,1).
- accurately_translates(0,0,1,0,1,0).
- accurately_translates(0,0,1,0,1,1).
- accurately_translates(0,0,1,1,0,0).
- accurately_translates(0,0,1,1,0,1).
- accurately_translates(0,0,1,1,1,0).
- accurately_translates(0,0,1,1,1,1).
- accurately_translates(0,1,0,0,0,0).
- accurately_translates(0,1,0,0,0,1).
- accurately_translates(0,1,0,0,1,0).
- accurately_translates(0,1,0,0,1,1).
- accurately_translates(0,1,0,1,0,0).
- accurately_translates(0,1,0,1,0,1).
- accurately_translates(0,1,0,1,1,0).
- accurately_translates(0,1,0,1,1,1).
- accurately_translates(0,1,1,0,0,0).
- accurately_translates(0,1,1,0,0,1).
- accurately_translates(0,1,1,0,1,0).
- accurately_translates(0,1,1,0,1,1).
- accurately_translates(0,1,1,1,0,0).
- accurately_translates(0,1,1,1,0,1).
- accurately_translates(0,1,1,1,1,0).
- accurately_translates(0,1,1,1,1,1).
- accurately_translates(1,0,0,0,0,0).
- accurately_translates(1,0,0,0,0,1).
- accurately_translates(1,0,0,0,1,0).
- accurately_translates(1,0,0,0,1,1).
- accurately_translates(1,0,0,1,0,0).
- accurately_translates(1,0,0,1,0,1).
- accurately_translates(1,0,0,1,1,0).
- accurately_translates(1,0,0,1,1,1).
- accurately_translates(1,0,1,0,0,0).
- accurately_translates(1,0,1,0,0,1).
- accurately_translates(1,0,1,0,1,0).
- accurately_translates(1,0,1,0,1,1).
- accurately_translates(1,0,1,1,0,0).
- accurately_translates(1,0,1,1,0,1).
- accurately_translates(1,0,1,1,1,0).
- accurately_translates(1,0,1,1,1,1).
- accurately_translates(1,1,0,0,0,0).
- accurately_translates(1,1,0,0,0,1).
- accurately_translates(1,1,0,0,1,0).
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- accurately_translates(1,1,0,0,1,1).
- accurately_translates(1,1,0,1,0,0).
- accurately_translates(1,1,0,1,0,1).
- accurately_translates(1,1,0,1,1,0).
- accurately_translates(1,1,0,1,1,1).
- accurately_translates(1,1,1,0,0,0).
- accurately_translates(1,1,1,0,0,1).
- accurately_translates(1,1,1,0,1,0).
- accurately_translates(1,1,1,0,1,1).
- accurately_translates(1,1,1,1,0,0).
- accurately_translates(1,1,1,1,0,1).
- accurately_translates(1,1,1,1,1,0).
- accurately_translates(1,1,1,1,1,1).

9.2 Proof #2 model

The following model satisfies all of the assumptions of proof #2.

cA = 0.
cP = 0.
cT = 0.
e1 = 0.
e1effects = 0.
e2 = 0.
e2effects = 0.
eA = 0.
eAeffects = 0.
eArun = 0.
lsP = 0.
sA = 0.
sP = 0.
stage1 = 0.
stage2 = 0.

extract(0) = 0.
extract(1) = 0.

retarget(0,0) = 0.
retarget(0,1) = 0.
retarget(1,0) = 0.
retarget(1,1) = 0.

converttext(0,0,0) = 0.
converttext(0,0,1) = 0.
converttext(0,1,0) = 0.
converttext(0,1,1) = 0.
converttext(1,0,0) = 0.
converttext(1,0,1) = 0.
converttext(1,1,0) = 0.
converttext(1,1,1) = 0.

run(0,0,0,0) = 0.
run(0,0,0,1) = 0.
run(0,0,1,0) = 0.
run(0,0,1,1) = 0.
run(0,1,0,0) = 0.
run(0,1,0,1) = 0.

159



run(0,1,1,0) = 0.
run(0,1,1,1) = 0.
run(1,0,0,0) = 0.
run(1,0,0,1) = 0.
run(1,0,1,0) = 0.
run(1,0,1,1) = 0.
run(1,1,0,0) = 0.
run(1,1,0,1) = 0.
run(1,1,1,0) = 0.
run(1,1,1,1) = 0.

compile(0,0,0,0,0) = 0.
compile(0,0,0,0,1) = 0.
compile(0,0,0,1,0) = 0.
compile(0,0,0,1,1) = 0.
compile(0,0,1,0,0) = 0.
compile(0,0,1,0,1) = 0.
compile(0,0,1,1,0) = 0.
compile(0,0,1,1,1) = 0.
compile(0,1,0,0,0) = 0.
compile(0,1,0,0,1) = 0.
compile(0,1,0,1,0) = 0.
compile(0,1,0,1,1) = 0.
compile(0,1,1,0,0) = 0.
compile(0,1,1,0,1) = 0.
compile(0,1,1,1,0) = 0.
compile(0,1,1,1,1) = 0.
compile(1,0,0,0,0) = 0.
compile(1,0,0,0,1) = 0.
compile(1,0,0,1,0) = 0.
compile(1,0,0,1,1) = 0.
compile(1,0,1,0,0) = 0.
compile(1,0,1,0,1) = 0.
compile(1,0,1,1,0) = 0.
compile(1,0,1,1,1) = 0.
compile(1,1,0,0,0) = 0.
compile(1,1,0,0,1) = 0.
compile(1,1,0,1,0) = 0.
compile(1,1,0,1,1) = 0.
compile(1,1,1,0,0) = 0.
compile(1,1,1,0,1) = 0.
compile(1,1,1,1,0) = 0.
compile(1,1,1,1,1) = 0.

  portable_and_deterministic(0,0,0).
- portable_and_deterministic(0,0,1).
- portable_and_deterministic(0,1,0).
- portable_and_deterministic(0,1,1).
- portable_and_deterministic(1,0,0).
- portable_and_deterministic(1,0,1).
- portable_and_deterministic(1,1,0).
- portable_and_deterministic(1,1,1).

  exactly_correspond(0,0,0,0).
- exactly_correspond(0,0,0,1).
- exactly_correspond(0,0,1,0).
- exactly_correspond(0,0,1,1).
- exactly_correspond(0,1,0,0).
- exactly_correspond(0,1,0,1).
- exactly_correspond(0,1,1,0).
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- exactly_correspond(0,1,1,1).
- exactly_correspond(1,0,0,0).
- exactly_correspond(1,0,0,1).
- exactly_correspond(1,0,1,0).
- exactly_correspond(1,0,1,1).
- exactly_correspond(1,1,0,0).
- exactly_correspond(1,1,0,1).
- exactly_correspond(1,1,1,0).
- exactly_correspond(1,1,1,1).

  accurately_translates(0,0,0,0,0,0).
- accurately_translates(0,0,0,0,0,1).
- accurately_translates(0,0,0,0,1,0).
- accurately_translates(0,0,0,0,1,1).
  accurately_translates(0,0,0,1,0,0).
- accurately_translates(0,0,0,1,0,1).
- accurately_translates(0,0,0,1,1,0).
- accurately_translates(0,0,0,1,1,1).
- accurately_translates(0,0,1,0,0,0).
- accurately_translates(0,0,1,0,0,1).
- accurately_translates(0,0,1,0,1,0).
- accurately_translates(0,0,1,0,1,1).
- accurately_translates(0,0,1,1,0,0).
- accurately_translates(0,0,1,1,0,1).
- accurately_translates(0,0,1,1,1,0).
- accurately_translates(0,0,1,1,1,1).
- accurately_translates(0,1,0,0,0,0).
- accurately_translates(0,1,0,0,0,1).
- accurately_translates(0,1,0,0,1,0).
- accurately_translates(0,1,0,0,1,1).
- accurately_translates(0,1,0,1,0,0).
- accurately_translates(0,1,0,1,0,1).
- accurately_translates(0,1,0,1,1,0).
- accurately_translates(0,1,0,1,1,1).
- accurately_translates(0,1,1,0,0,0).
- accurately_translates(0,1,1,0,0,1).
- accurately_translates(0,1,1,0,1,0).
- accurately_translates(0,1,1,0,1,1).
- accurately_translates(0,1,1,1,0,0).
- accurately_translates(0,1,1,1,0,1).
- accurately_translates(0,1,1,1,1,0).
- accurately_translates(0,1,1,1,1,1).
- accurately_translates(1,0,0,0,0,0).
- accurately_translates(1,0,0,0,0,1).
- accurately_translates(1,0,0,0,1,0).
- accurately_translates(1,0,0,0,1,1).
- accurately_translates(1,0,0,1,0,0).
- accurately_translates(1,0,0,1,0,1).
- accurately_translates(1,0,0,1,1,0).
- accurately_translates(1,0,0,1,1,1).
- accurately_translates(1,0,1,0,0,0).
- accurately_translates(1,0,1,0,0,1).
- accurately_translates(1,0,1,0,1,0).
- accurately_translates(1,0,1,0,1,1).
- accurately_translates(1,0,1,1,0,0).
- accurately_translates(1,0,1,1,0,1).
- accurately_translates(1,0,1,1,1,0).
- accurately_translates(1,0,1,1,1,1).
- accurately_translates(1,1,0,0,0,0).
- accurately_translates(1,1,0,0,0,1).
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- accurately_translates(1,1,0,0,1,0).
- accurately_translates(1,1,0,0,1,1).
- accurately_translates(1,1,0,1,0,0).
- accurately_translates(1,1,0,1,0,1).
- accurately_translates(1,1,0,1,1,0).
- accurately_translates(1,1,0,1,1,1).
- accurately_translates(1,1,1,0,0,0).
- accurately_translates(1,1,1,0,0,1).
- accurately_translates(1,1,1,0,1,0).
- accurately_translates(1,1,1,0,1,1).
- accurately_translates(1,1,1,1,0,0).
- accurately_translates(1,1,1,1,0,1).
- accurately_translates(1,1,1,1,1,0).
- accurately_translates(1,1,1,1,1,1).

9.3 Proof #3 model

The following model satisfies all of the assumptions of proof #3.

cGP = 0.
cP = 0.
eA = 0.
eP = 0.
ePeffects = 0.
lsP = 0.
sP = 0.

compile(0,0,0,0,0) = 0.
compile(0,0,0,0,1) = 0.
compile(0,0,0,1,0) = 0.
compile(0,0,0,1,1) = 0.
compile(0,0,1,0,0) = 0.
compile(0,0,1,0,1) = 0.
compile(0,0,1,1,0) = 0.
compile(0,0,1,1,1) = 0.
compile(0,1,0,0,0) = 0.
compile(0,1,0,0,1) = 0.
compile(0,1,0,1,0) = 0.
compile(0,1,0,1,1) = 0.
compile(0,1,1,0,0) = 0.
compile(0,1,1,0,1) = 0.
compile(0,1,1,1,0) = 0.
compile(0,1,1,1,1) = 0.
compile(1,0,0,0,0) = 0.
compile(1,0,0,0,1) = 0.
compile(1,0,0,1,0) = 0.
compile(1,0,0,1,1) = 0.
compile(1,0,1,0,0) = 0.
compile(1,0,1,0,1) = 0.
compile(1,0,1,1,0) = 0.
compile(1,0,1,1,1) = 0.
compile(1,1,0,0,0) = 0.
compile(1,1,0,0,1) = 0.
compile(1,1,0,1,0) = 0.
compile(1,1,0,1,1) = 0.
compile(1,1,1,0,0) = 0.
compile(1,1,1,0,1) = 0.
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compile(1,1,1,1,0) = 0.
compile(1,1,1,1,1) = 0.

  exactly_correspond(0,0,0,0).
- exactly_correspond(0,0,0,1).
- exactly_correspond(0,0,1,0).
- exactly_correspond(0,0,1,1).
- exactly_correspond(0,1,0,0).
- exactly_correspond(0,1,0,1).
- exactly_correspond(0,1,1,0).
- exactly_correspond(0,1,1,1).
- exactly_correspond(1,0,0,0).
- exactly_correspond(1,0,0,1).
- exactly_correspond(1,0,1,0).
- exactly_correspond(1,0,1,1).
- exactly_correspond(1,1,0,0).
- exactly_correspond(1,1,0,1).
- exactly_correspond(1,1,1,0).
- exactly_correspond(1,1,1,1).

  accurately_translates(0,0,0,0,0,0).
- accurately_translates(0,0,0,0,0,1).
- accurately_translates(0,0,0,0,1,0).
- accurately_translates(0,0,0,0,1,1).
  accurately_translates(0,0,0,1,0,0).
- accurately_translates(0,0,0,1,0,1).
- accurately_translates(0,0,0,1,1,0).
- accurately_translates(0,0,0,1,1,1).
- accurately_translates(0,0,1,0,0,0).
- accurately_translates(0,0,1,0,0,1).
- accurately_translates(0,0,1,0,1,0).
- accurately_translates(0,0,1,0,1,1).
- accurately_translates(0,0,1,1,0,0).
- accurately_translates(0,0,1,1,0,1).
- accurately_translates(0,0,1,1,1,0).
- accurately_translates(0,0,1,1,1,1).
- accurately_translates(0,1,0,0,0,0).
- accurately_translates(0,1,0,0,0,1).
- accurately_translates(0,1,0,0,1,0).
- accurately_translates(0,1,0,0,1,1).
- accurately_translates(0,1,0,1,0,0).
- accurately_translates(0,1,0,1,0,1).
- accurately_translates(0,1,0,1,1,0).
- accurately_translates(0,1,0,1,1,1).
- accurately_translates(0,1,1,0,0,0).
- accurately_translates(0,1,1,0,0,1).
- accurately_translates(0,1,1,0,1,0).
- accurately_translates(0,1,1,0,1,1).
- accurately_translates(0,1,1,1,0,0).
- accurately_translates(0,1,1,1,0,1).
- accurately_translates(0,1,1,1,1,0).
- accurately_translates(0,1,1,1,1,1).
- accurately_translates(1,0,0,0,0,0).
- accurately_translates(1,0,0,0,0,1).
- accurately_translates(1,0,0,0,1,0).
- accurately_translates(1,0,0,0,1,1).
- accurately_translates(1,0,0,1,0,0).
- accurately_translates(1,0,0,1,0,1).
- accurately_translates(1,0,0,1,1,0).
- accurately_translates(1,0,0,1,1,1).
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- accurately_translates(1,0,1,0,0,0).
- accurately_translates(1,0,1,0,0,1).
- accurately_translates(1,0,1,0,1,0).
- accurately_translates(1,0,1,0,1,1).
- accurately_translates(1,0,1,1,0,0).
- accurately_translates(1,0,1,1,0,1).
- accurately_translates(1,0,1,1,1,0).
- accurately_translates(1,0,1,1,1,1).
- accurately_translates(1,1,0,0,0,0).
- accurately_translates(1,1,0,0,0,1).
- accurately_translates(1,1,0,0,1,0).
- accurately_translates(1,1,0,0,1,1).
- accurately_translates(1,1,0,1,0,0).
- accurately_translates(1,1,0,1,0,1).
- accurately_translates(1,1,0,1,1,0).
- accurately_translates(1,1,0,1,1,1).
- accurately_translates(1,1,1,0,0,0).
- accurately_translates(1,1,1,0,0,1).
- accurately_translates(1,1,1,0,1,0).
- accurately_translates(1,1,1,0,1,1).
- accurately_translates(1,1,1,1,0,0).
- accurately_translates(1,1,1,1,0,1).
- accurately_translates(1,1,1,1,1,0).
- accurately_translates(1,1,1,1,1,1).
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Appendix D: Guidelines for Compiler Suppliers

Diverse double-compiling (DDC) can detect (and thus counter) the trusting trust attack, but only 

when DDC is actually applied.  While developing this dissertation it  became clear that some 

practices can make DDC much easier to apply.  Compiler suppliers can make it easier to apply 

DDC by following these guidelines:

1. Pass the compiler bootstrap test, if applicable.  If the compiler supports the language(s) it 

is written in, then include the compiler bootstrap test (see section 2.3) as a required part 

of the compiler’s regression test suite.  The compiler bootstrap test can detect some errors 

and non-determinism that would also affect DDC (for an example, see section 7.1.3).

2. Don’t use or write uninitialized values.  Some languages automatically initialize values 

when they are declared, and thus automatically meet this criteria.  (For an example where 

this guideline was not followed, see section 7.1.4.)

3. Record the detailed information necessary to recompile the compiler and produce the  

same  bit  sequence.  Record  all  information  necessary  for  recompilation,  including 

compilation options/flags and environment variables.

4. Don’t include information about the compilation process inside files used during later  

compilation.  If information about the compilation is stored inside an executable or other 

files  directly  used  during  later  compilations,  then  it  can  be  much  more  difficult  to 

reproduce exactly the  same executable.   Instead,  capture  this  information in  separate 

file(s) that are not used (e.g., read or executed) during later compilations (e.g., by writing 

this information to a file during the build process, and never reading it later).  Since the 

file  is  not  used,  it’s  easy  to  show  that  its  contents  are  irrelevant  during  later 
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recompilations.  (For an example of where this guideline was not followed, see section 

7.3.2.1.)

5. Encourage the development of alternative implementations of languages.  Use or help  

develop public specifications for computer languages (preferably open standards).  DDC 

requires  a  separate  trusted  compiler  that  can  process  the  parent  compiler.   Thus,  to 

simplify DDC use, encourage the development of alternative compilers and remove any 

roadblocks to their development.

DDC tends to be easier to apply if there are several already-existing compilers that could 

be used as a trusted compiler, and such compilers are more likely if there is a public 

specification for the language used to write the parent compiler.  If such compilers do not 

already exist, having a public specification greatly simplifies the task of creating a trusted 

compiler for use with DDC.  The specification should be an “open standard”; a good 

definition of the term “open standard” is the definition of “free and open standard” by the 

Digital Standards Organization20.  Open standards enable fully open competition between 

suppliers.

20The Digital Standards Organization defines “free and open standard” as follows:
◦ A free and open standard is immune to vendor capture at all stages in its life-cycle. Immunity 

from vendor capture makes it possible to freely use, improve upon, trust, and extend a 
standard over time.

◦ The standard is adopted and will be maintained by a not-for-profit organization, and its 
ongoing development occurs on the basis of an open decision-making procedure available to 
all interested parties.

◦ The standard has been published and the standard specification document is available freely. 
It must be permissible to all to copy, distribute, and use it freely.

◦ The patents possibly present on (parts of) the standard are made irrevocably available on a 
royalty-free basis.

◦ There are no constraints on the re-use of the standard.
The economic outcome of a free and open standard is that it enables perfect competition between 

suppliers of products based on the standard [Digistan].  Patents, by definition, are exclusive and thus 
necessarily discriminatory when royalty payments or other conditions are imposed.  See [Wheeler2008] for 
a comparison of various definitions of “open standard” and their application to a particular specification.
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6. Eliminate roadblocks to developing alternative language implementations, particularly  

patents.  Avoid using constructs covered by potentially-enforceable patents, ensure that  

specification authors  do not  require  the  use  of  enforceable  patents  to  implement  the 

specification,  and  work  to  eliminate  software  patents  worldwide.   Patents  are 

government-granted  monopolies.   Historically,  software  could  not  be  patented,  and 

software  innovation  flourished  without  patents  [Klemens2008]  [Wheeler2009i]. 

Unfortunately,  some  countries  have  permitted  software  patents  in  recent  years,  and 

several analyses suggest that doing so was a mistake.  For example, increases in software 

patent  share  in  the  1990s  were  associated  with  decreases in  research  intensity 

[Bessen2004]  (suggesting  that  software  patents  discourage research).  Many  other 

problems with software patents are discussed in [Bessen2008].  [End2008] summarizes 

the state of software patents as of 2008.  Software patents affect DDC because they can 

inhibit  the  development  of  alternative  compilers  and  environments.   Since  software 

patents can reduce the number of legal developers and users worldwide, software patents 

can even inhibit the availability of alternatives to those in countries free from software 

patents.   Any  patents  that  interfere  with  the  creation  of  an  alternative  compiler  or 

environment interfere with DDC, and thus interfere with security (because they interfere 

with protection against the trusting trust attack).  Eliminating software patents worldwide 

would be the most thorough method to eliminate the problems they cause.

7. Make the compiler portable and deterministic.   This is required by DDC (see section 

5.7.8).  If a compiler iterates over hashtable entries, ensure that the retrieved order will be 

the same across different environments and compiler implementations if it can affect the 

final result.  If non-portable extensions are used in a compiler’s implementation, clearly 

document the extensions.
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8. Consider using a simpler language subset to implement the compiler.  Using a subset can 

make  it  easier  to  implement  a  new  trusted  compiler  if  necessary,  since  the  trusted 

compiler would probably need fewer constructs.  Be sure to document this subset, and 

test to ensure that only this subset is used (as part of the compiler’s regression test suite).

9. Release self-parented compiler executables,  if  applicable.   If  a  compiler  supports  the 

language(s)  it  is  written  in,  only release  compiler  executables  after  they have  “self-

parented”  as  described  in  section  4.5.   This  means  that  given  the  source  code  of  a 

compiler  and  a  bootstrap  compiler  executable,  compile  the  source  code  using  the 

bootstrap compiler, then use the resulting executable to compile the source code again. 

As noted in section 4.5, this has many practical benefits that have nothing to with DDC 

(for example, if the compiler generates faster code than the bootstrap compiler does, then 

after self-recompilation the compiler itself will execute faster).  For DDC, self-parenting 

reduces the amount of software that must be tracked (since the parent is the same as the 

compiler-under-test), and it reduces the amount of source code that must be examined 

afterwards to determine if the compiler is not malicious (since the source of the compiler- 

under-test sA is the same as the source of parent sP, only sA needs to be examined).

10. Release the compiler as free-libre/open source software (FLOSS), and choose a FLOSS  

compiler as its parent.  Alternatively, though this alternative is less effective, release the 

source code to trusted third parties.  The source code for the compiler being tested and its 

parent must be available to apply DDC.  In addition, DDC merely shows that the source 

code and executable correspond; the source code must then be inspected if the goal is to 

determine that there is no malicious code being executed.  This means that the DDC 

technique is most useful for countering the trusting trust attack when applied to software 

whose source code is publicly available for review.  Such review is much more useful for 
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FLOSS, since with FLOSS any issues found in review can be repaired and redistributed 

by anyone.  If a supplier refuses to release their compiler as FLOSS, the supplier should 

at least release the source code to third parties who can perform DDC and thoroughly 

examine the  source code for  malicious  code.   Such third parties  must  be  potentially 

highly trusted by users, since users will not be able to independently verify the results.

11. Apply DDC before each release.  Of course, the simplest way to ensure that DDC can be 

applied to a compiler is to perform DDC before each release.  Users may want to apply 

DDC using different trusted compilers or trusted environments, but this is likely to be 

easier if DDC has previously been successfully applied.
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Appendix E: Key definitions

assembler   A compiler for a language whose instructions are primarily a close approximation of 
the executing environment’s instructions.

binary A common alternative term for executable (e.g., [Sabin2004]).  However, this term 
is  misleading;  in  modern  computers,  all data  is  represented  using  binary codes. 
Thus, this dissertation uses the term “executable” instead.

compiler An executable that, when executed, translates source code into an executable (it may 
also perform other actions).

compiling The process of using a compiler to translate source code into an executable.

correspond An executable e corresponds to source code s if and only if execution of e always 
behaves as specified by s when the execution environment of e behaves correctly.

corrupted 
compiler

A corrupted executable that is a compiler.

corrupted 
executable

An  executable  that  does  not  correspond  to  its  putative  source  code  (see  also 
“corrupted compiler” and “maliciously corrupted executable”).

Diverse 
Double-
Compiling 
(DDC)

A technique for determining if a compiler is corrupted, in which the source code is 
compiled twice: the source code of the compiler’s parent is compiled using a trusted 
compiler, and then the putative compiler source code is compiled using the result of 
the first  compilation.   If  the DDC result  is  bit-for-bit  identical  with the original 
compiler-under-test’s  executable,  and  certain  other  assumptions  hold,  then  the 
compiler-under-test’s executable corresponds with its putative source code.

effects All information or execution timing arising from the environment that can affect the 
results of a compilation, but is not part of the input source code.  This is used to 
model random number generators, thread execution ordering, differences between 
platforms allowed by the language, and so on.

environ­
ment

A platform that can run executables.  This would include the computer hardware 
(including  the  central  processing  unit)  and  any  software  that  supports  or  could 
influence the compiler’s result (e.g., the operating system).

executable Data that can be directly executed by a computing environment.  An executable may 
be code for an actual machine or for  a simulated machine (e.g.,  a “byte code”). 
Compilers produce executables, and compilers themselves are executables.
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fragility The  susceptibility  of  the  trusting  trust  attack  to  failure,  i.e.,  that  a  trigger  will 
activate when the attacker did not wish it to (risking a revelation of the attack), fail 
to trigger when the attacker would wish it to, or that the payload will fail to work as 
intended by the attacker.

maliciously 
corrupted 
compiler

A maliciously corrupted executable that is a compiler.

maliciously 
corrupted 
executable

A corrupted executable whose corruption was caused by intentional subversion.

maliciously 
misleading 
code

Source code that is intentionally designed to look benign, yet creates a vulnerability 
(including an attack).

object code For purposes of this dissertation, a synonym for “executable”.

payload Code that actually performs a malicious event (e.g., the inserted malicious code and 
the code that causes its insertion).  These are initiated through triggers.

source 
code (aka 
source)

A representation  of  a  program that  can  be  transformed  by  a  compiler  into  an 
executable.  It is typically human-readable.

subverted 
compiler

Synonym for “maliciously corrupted compiler”.

trigger A condition, determined by an attacker, in which a malicious event is to occur (e.g., 
the  condition  causing  malicious  code  to  be  inserted  into  a  program,  and  the 
condition that causes the inserted code to take action).

Trojan 
horse

Software  that  appears  to  the  user  to  perform a  desirable  function  but  facilitates 
unauthorized access into the user’s computer system.

trusted The justified confidence that something (e.g., a program or process) does not have 
triggers and payloads that would affect the results of DDC.  See section  4.3 for a 
basic discussion of the term “trusted”; see chapter 6 for methods to increase the level 
of confidence.

trusting 
trust attack

An attack in which an attacker attempts to disseminate a compiler executable that 
produces  corrupted  executables,  at  least  one of  those corrupted  executables  is  a 
corrupted  compiler,  and  the  attacker  attempts  to  make  this  situation  self-
perpetuating.
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