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Outline

1&2.Introduction & Background
(including dissertation thesis)
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4. Informal description of DDC
5. Formal proof
6. Methods to increase diversity
7. Demonstrations of DDC (Tinycc, Lisp, GCC)
8. Practical challenges
9. Conclusions and ramifications

Presentation generally follows
dissertation outline (+ additional background)
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ENIAC (Operational July 1946)

• First general-purpose electronic computer
• Programmed by patch cables and switches

– Could take days to reprogram
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Manchester Small-Scale Experimental 
Machine [“Baby”] (June 1948)

• First stored-program computer (memory held the 
program as well as the data it was working on)
– Could (re)load programs quickly
– Computer can generate computer programs
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Executables, Source, Compilers

Compiler: An executable that 
translates source code into an 
executable

Executable: Data that can be directly 
executed by a computing environment 
(real or virtual). Aka “binary”

Compilation
process

Other
inputs

Compilers ease development & modification of software...
but with risks that were only revealed later

Source code aka 
source: Data that is a 
representation of a 
program that can be 
translated into an 
executable. Typically
human-readable
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Executables can be corrupted

• Corrupted executable: An executable that does not 
correspond to its putative source code
– An executable e corresponds to source code s iff execution of e 

always behaves as specified by s when the execution 
environment of e behaves correctly

• Maliciously corrupted executable: Intentionally-created 
corrupted executable

We can find maliciously corrupted executables by
compiling again & seeing if the results match, right?

No, not always.
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Trusting Trust attack

1974: Karger & Schell first described (obliquely)

Analysis
program
source

Trustworthy
source
code...

can produce 
maliciously 

corrupted 
executables Critical

program
Analysis
program

Compiler
executable

Compiler executable
(maliciously corrupted)

Fundamental security problemFundamental security problem

Compiler
source

Critical
program
source

1984: Ken Thompson. Demo’d.  Undetected

login Symbolic debugger C compiler

Perpetuates
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Definition of “trusting trust” attack

Trusting trust attack =
An attack in which:
– “the attacker attempts to disseminate a compiler 

executable that produces corrupted executables,
– at least one of those produced corrupted 

executables is a corrupted compiler, and
– the attacker attempts to make this situation self-

perpetuating”
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Other attacks exist, but tend to have 
detection techniques/countermeasures

Attack Detection/Countermeasure
… …

Review source code

Trusting trust attack No effective measure before now

Find & exploit unintentional 
weaknesses in existing 
program

Search for weaknesses in 
program, modify design to 
reduce impact, etc.

Insert weakness/attack in 
program source code
Modify/replace executable 
without trusting trust attack

Regenerate executable and 
compare



10

Problem Importance

• “Trusting trust” has been treated as if it were a 
fundamental computer security “axiom”
– Attack that “can’t” be countered
– Decades of no adequate solution
– “Computer security is hopeless”

• Attackers have incentive to use it at some point if 
uncounterable
– Huge benefits: possibly control nearly all computers worldwide
– Risks low: undetectable (til now!)
– Costs often low...medium (vary by circumstance)

• Even if costs were high, to some it’d be worth it
• Irrational to trust computers unless resolved
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Some related background

• “Simple” solutions ineffective
– Manual analysis impractical (size, change)
– Interpreted languages—merely moves attack

• Draper 1984: “Paraphrase” compiler could filter
– No way to confirm if countered

• McDermott 1984: Paraphrase compiler could be 
reduced-function, could add irrelevant functions

• Proof of compiler correctness
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Compiler bootstrap test

• “Compiler bootstrap test” is a common test for 
detecting compiler errors
– Formally described in Goerigk 1999
– If c(s,e) is the result of compiling source s using 

compiler executable e, m is a correct 
“bootstrap” compiler, m0=c(s,m), m1=c(s,m0), 
m2=c(s,m1), all compilations terminate, m0 and 
s are both correct and deterministic, and the 
underlying hardware works correctly, then 
m1=m2 (passes test)

• If m1≠m2, an assumption is wrong (fails test)
– Often the wrong assumption is “s is correct”, 

making this a helpful test
• A corrupted compiler can pass this test

– Passing test doesn’t prove correctness

1

2s 

m0

m1

m

3

m2
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Dissertation Thesis

The trusting trust attack can be detected and 
effectively countered using the “Diverse Double-
Compiling” (DDC) technique, as demonstrated by:

1. a formal proof that DDC can determine if source 
code and generated executable code correspond

2. a demonstration of DDC with four compilers (a 
small C compiler, a small Lisp compiler, a small 
maliciously corrupted Lisp compiler, and a large 
industrial-strength C compiler, GCC), and

3. a description of approaches for applying DDC in 
various real-world scenarios
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3. Description of threat

• Attacker motivation
– Successful “trusting trust” attack enables control of 

all systems compiled by that compiler
– Until this work, essentially undetectable

• Attack depends on:
– Trigger: Condition determined by an attacker in 

which a malicious event is to occur (e.g., when 
malicious code is to be inserted into a compiled 
program)

– Payload: Code that performs the malicious event 
(e.g., the inserted malicious code and the code that 
causes its insertion)

– Non-discovery: Victims don’t detect attack
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4. Informal description of diverse 
double-compiling (DDC)

• Idea created by Henry Spencer in 1998
– Uses a different (diverse) trusted* compiler
– Two compilation steps

• Compile source of “parent” compiler
• Use results to compile source of compiler-under-test

– If DDC result bit-for-bit identical to compiler-under-
test cA, then source and executable correspond
• Testing for bit-for-bit equality is easy

– Source code may include malicious/erroneous code, 
but now we can review source instead

• Before this work:
– Never examined/justified in detail
– Never tried * We will define “trusted” soon
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Diverse double-compiling (DDC)

1

2

sP: source
(of parent cP?)

sA: source
(of cA?)

stage1

stage2: executable;
to run on
eArun: environment

e1effects
e1: environment

e2effects
e2: environment

cT: executable
(trusted compiler)

DDC Process

o1

o2

sP: source
(of parent
cP?)

sA: source
(of cA?)

cP

cA: executable; compiler
under test, to run on
eArun: environment

ePeffects
eP: env.

eAeffects
eA: env.

cGP : executable
(grandparent)

Claimed Origin

co
mpa

re
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Assumptions (informal)

• DDC performed by trusted programs/processes
– Includes trusted compiler cT, trusted environments, 

trusted comparer, trusted acquirers for cA, sP, sA

– Trusted = justified confidence that it does not have 
triggers and payloads that would affect the results 
of DDC.  Could be malicious, as long as DDC is 
unaffected

• Correct languages (Java compiler for Java source)
• Compiler defined by sP is deterministic (same 

inputs always produce same outputs)
– Real compilers typically deterministic

• Non-deterministic compilers hard to test & can’t use 
compiler bootstrap test
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DDC does not assume that different 
compilers produce identical executables

• Different compilers typically produce different 
executables

• But given this C source:

• And two different properly-working C compilers:
– Resulting executables will usually differ
– Running those executables should produce “4” (modulo 

text encoding, & presuming certain other assumptions)

#include <stdio.h>
main() {
        printf("%d\n", 2+2);
}
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Special case: Self-parenting compiler

• If source sP = sA, termed “self-parenting”
• My 2005 ACSAC paper explained DDC for this case
• Dissertation generalizes 2005 paper

– DDC no longer requires it, it’s simply a special case

1

2

stage1

stage2

e1effects
e1

e2effects
e2

cT

DDC Process

o1

o2

sP = sA
cP

cA

ePeffects
eP

eAeffects
eA

cGP

Claimed Origin

co
mpa

re
sP = sA
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Why not always use
the trusted compiler?

• May not be suitable for general use
– May be slow, produce slow code, generate code for 

a different CPU, be costly, have undesirable license 
restrictions, may lack key functions, etc.

– In particular, a simple easily-verified compiler (with 
limited functionality & optimizations) could be used

• Using a different compiler greatly increases 
confidence that source & executable correspond
– Attacker must now subvert multiple executables and 

executable-generation processes to avoid detection
– DDC can be performed multiple times, using 

different compilers and/or different environments, 
increasing difficulty of undetected attack
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N-version programming is 
fundamentally different from DDC

.1
Input1, Input2,
Input3, ...

Output1, Output2,
Output3, ...

Program1

• N-version: Multiple programs implement same specification, receive 
same inputs—outputs equal? Independence of errors doesn’t hold!

• DDC: Different purpose—detect when not common specification
– Trusting trust attack not a tiny accidental difference (tricky!)
– Trusted compiler selected as unlikely to include same attack

• DDC: Single input (pair of source code)/output, not all possible I/O

Common Specification

.2
Same
inputs

Program2

.3
Same
inputs

Program3

Compare

Output1, Output2,
Output3, ...

Output1, Output2,
Output3, ...

...
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Can we create a strong justification 
that DDC counters trusting trust?

• 2005 ACSAC paper has informal justification
– Can we do better?  Not the first with this concern...

“The only way to rectify our reasonings is to make 
them as tangible as those of the Mathematicians, 
so... when there are disputes... we can simply say: 
Let us calculate... to see who is right.”
– Gottfried Leibniz, The Art of Discovery (1685)

Notations & deductive systems now 
exist that are sufficient for our purpose
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5. Formal proof

• Dissertation provides a formal proof for DDC
– More rigor than the informal justification in the 

2005 ACSAC paper (though based on it)
– Uses classical First-Order Logic (FOL) with 

equality
• Very widely accepted/used
• Not new logic system – models circumstance

• Tools: Prover9 & Ivy
– Including why you should believe the proofs

• Three proofs
• Correct goals & assumptions?

Gold
Standard
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Tools: Prover9 & Ivy

• Prover9 accepts assumptions and goals in first-
order logic (FOL)
– If it can prove goal, outputs proof (by contradiction)
– DDC modeled using prover9 representation of FOL

• Ivy (separate tool) can verify prover9 proof
– DDC proofs are ivy-verified!
– Ivy is itself proved using ACL2

• Prover9, Ivy, & ACL2 are open source software
– Open to review by all

• Proofs also hand-verified (myself & co-workers)
• Excellent evidence that when the assumptions are 

true, the conclusions must follow
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Three proofs

• Proof 1: “If DDC produces the same executable as the 
compiler-under-test cA, then source code sA corresponds to 
the executable cA” (5 assumptions, 19 steps)

(stage2 = cA) -> exactly_correspond(cA, sA, lsA, eArun).
• Proof 2: “Under benign conditions and cP_corresponds 

_to_sP, the DDC result stage2 and the compiler-under-test cA 

will be the same” (9 assumptions, 30 steps)
stage2 = cA.

• Proof 3: “When there’s a benign environment & a 
grandparent compiler, proof 2 assumption 
cP_corresponds_to_sP is true” (3 assumptions, 10 steps)

exactly_correspond(cP, sP, lsP, eA).
• Discovered need for 3 proofs as proofs were developed
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Correct goals & assumptions?

• This can’t be shown formally
• Reasons to believe correct goals & assumptions:

– Assumptions proven consistent (mace4 can create model 
that satisfies them)

– Based on informal justification in peer-reviewed ACSAC 
paper, which no one has refuted

– Author, co-workers, committee have reviewed
– All demonstration results explainable by proofs
– Formalization process forced clarification that there were 

multiple claims to prove; suggests insight from proof
– Proofs clearly fit together

• #3: If benign + a grandparent, then cP_corresponds_to_sP
• #2: If benign + cP_corresponds_to_sP, then stage2 = cA
• #1: If stage2 = cA, then cA and sA correspond
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6. Methods to increase diversity

• To gain justified confidence in the trusted compiler 
cT & the DDC environments we could perform a 
complete formal proof of them... but this is difficult

• Another, often simpler method is diversity:
– Diversity in compiler implementation
– Diversity in time (e.g., cT developed long before)
– Diversity in environment
– Diversity in source code input (mutated source)

• Semantics-preserving mutations
• Non-semantics-preserving mutations
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7. Demonstrations of DDC

• tcc (TinyCC): C compiler (ACSAC paper)
• 2 Goerigk Lisp compilers

– One uncorrupted
– One maliciously corrupted

• GCC (scales up)
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tcc

• Performed on small C compiler, tcc (ACSAC)
– Separate runtime library, handle in pieces

• tcc defect: fails to sign-extend 8-bit casts
– x86: Constants -128..127 can be 1 byte (vs. 4)
– tcc detects this with a cast (prefers short form)
– tcc bug – cast produces wrong result, so tcc 

compiled-by-self always uses long form
• tcc junk bytes: long double constant

– Long double uses 10 bytes, stored in 12 bytes
– Other two “junk” bytes have random data

• Fixed tcc, technique successfully verified fixed tcc
• Used verified fixed tcc to verify original tcc

It works!It works!
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Diverse double-compilation of tcc

Com
pare1

tcc

Diverse Double-compile

c(stcc,tcc)
stcc

c(slibtcc1,tcc)

libtcc1

Self-
regen?

slibtcc1

gcc

1:1
1:0

2:0
2:1 Stage2

Stage1

c(stcc,gcc)

0:1
0:0

Com
pare2

(Runtime)

(Rest of
compiler)

c(slibtcc1,gcc)

c(slibtcc1,c(stcc,gcc))c(stcc,c(stcc,gcc))

Must handle 
real compilers 
in pieces;
the approach 
works
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Goerigk Lisp compilers

• Pair of Lisp compilers, “correct” & “incorrect”
– “Incorrect” implemented the trusting trust attack
– Ported to Common Lisp

• DDC applied
– “Correct” compiler compared correctly, as expected
– Executable based on “incorrect” source code did 

not match the DDC results when DDC used the 
“correct” source code, as expected
• “Diff” between results revealed that the 

“incorrect” executable was producing different 
results, in particular for a “login” program

• Tip-off that executable is probably malicious
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GCC

• GNU Compiler Collection (GCC) is widely-used 
compiler in industry – shows DDC scales up
– Many languages; for demo, chose C compiler

• Used Intel C++ compiler (icc) as trusted compiler
– Completely different compiler

• Fedora didn’t record info to reproduce executable
• Created C compiler executable to capture all 

necessary data & use that as compiler under test
– Chose GCC version 3.0.4 as compiler under test
– “gcc” is a front-end that runs the real compiler 

programs; C compiler is actually cc1
– Code outside of GCC (including linker, assembler, 

archiver, etc.) considered outside compiler
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DDC applied to GCC (simplified)

1

2

sP=sA : source
of GCC 3.0.4 stage1

stage2: executable;
to run on
eArun: environment

cT: executable : icc
(trusted compiler)

DDC Process

o1

o2

cP

cA: executable; compiler
under test, to run on
eArun: environment

cGP : GCC in 
Fedora 9

Claimed Origin

co
mpa

re

sP=sA : source
of GCC 3.0.4



34

GCC (continued)

• Challenges:
– “Master result” pathname embedded in executable 

(so made sure it was the same)
– Tool semantic change (“tail +16c”)
– GCC did not fully rebuild when using its build 

process (libiberty library not rebuilt)
• This took time to trace back & determine cause

• Once corrected, DDC produced bit-for-bit equal 
results as expected
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8. Practical challenges

• Limitations
– Depends on confidence DDC process elements (trusted 

compiler, environment, etc.) not include triggers/payloads
– DDC only applies to the specific executable under test; 

use cryptographic hashes to identify it
– Source code may have malicious code; DDC only shows 

that there is “nothing hidden in the executable”
– If DDC result is different from compiler under test, at least 

one of proof #2’s assumptions has been violated... but it 
may not be obvious which one(s)

• Non-determinism
• Difficulty in finding alternative trusted compilers
• Countering “pop-up” attacks

– Re-run DDC on every executable release
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8. Practical challenges (continued)

• Multiple sub-components: See tcc
• Inexact comparison
• Interpreters/recompilation dependency loops
• Untrusted environment & broadening DDC 

application
– Operating system+compiler as “compiler under test”

• Trusted build agents
• Application problems with current distributions

– Inadequate information for DDC
– Prelink, ccache

• Finding maliciously misleading code
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How can an attacker counter DDC?

Must falsify a DDC assumption, for example:
• Swap DDC result with cA during DDC process (!)

– Defender can protect DDC environment
• Make compiler-under-test ≠ compiler used

– If environment may provide inaccurate compiler under 
test, defender can extract without using environment

– If environment may run different compiler, defender can 
redefine “compiler” to include environment & apply DDC

• Subvert trusted compiler/trusted environment(s)
– Challenge: Don’t usually know what they’ll be
– Defender can use DDC multiple times

• Attacker must subvert them all, while defender only 
needs to protect at least one—unusual for defender
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9. Conclusions and ramifications

• DDC can show that source and executable correspond
– Executable may have errors or be malicious, but 

these can be found by examining source (easier)
• DDC primarily useful to those who have access to the 

source code (advantage for open source software)
• Policy implications – for compilers of critical software:

– Require information to do DDC?
– Require use of (unpatented) language standards?

• Potential future work: Recompiling whole OS

The trusting trust attack can be detected
and effectively countered by DDC
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Summary of formal proofs
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Classical First-Order Logic (FOL)

-A not A, ¬A. --A equivalent to A
A & B A and B, A ∧ B
A | B A or B, A ∨ B
A -> B A implies B, A → B, if A then B, (-A)|B
all X ... for all X … , ∀ X … ;  notation is optional
Initial uppercase is variable, else constant

Examples
man(X) -> mortal(X). % “All men are mortal.”
man(socrates).         % “Socrates is a man.”
   % This is enough to prove:
mortal(socrates).            % “Socrates is mortal.”
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Proof #1

• Proof #1 proves goal:
– source_corresponds_to_executable
– I.E., if DDC recreates the compiler-under-test, then 

the compiler source and executable correspond
• It requires 5 assumptions:

– definition_stage1
– definition_stage2
– cT_compiles_sP
– define_exactly_correspond
– sP_compiles_sA

• This is the heart of DDC
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Proof #1 Goal:
source_corresponds_to_executable

(stage2 = cA) ->
   exactly_correspond(cA, sA, lsA, eArun).

where predicate exactly_correspond(Executable, 
Source, Lang, RunOn) is true iff Executable exactly 
implements source code Source when interpreted 
as language Lang and run on environment RunOn.
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definition_stage1
 and definition_stage2

 stage1 = compile(sP, cT, e1effects, e1, e2).
 stage2 = compile(sA, stage1, e2effects, e2, 

eArun).

where compile(Source, Compiler, EnvEffects, RunOn, Target) 
represents compiling Source with the Compiler, running it in 
environment RunOn but targeting the result for environment 
Target. When Compiler runs, it uses Source and EnvEffects as 
input; EnvEffects models the inputs (data and timing) from the 
environment, which may vary between executions while still 
conforming to the language definition (e.g., random number 
generators, heap allocation addresses, thread exec order, etc.).
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cT_compiles_sP

all EnvEffects accurately_translates(cT, lsP, sP, 
EnvEffects, e1, e2).

Trusted compiler cT is a compiler for language lsP, and it 
will accurately translate sP if run in environment e1, 
regardless of EnvEffects.  cT targets (generates code 
for) environment e2.

Thus, you can’t use a Java compiler to compile C 
(directly)!

You can use the random number generator, but the 
results have to be an accurate translation (even if it’s 
not the same each time).
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define_exactly_correspond

accurately_translates(Compiler, Lang, Source, 
EnvEffects, ExecEnv, TargetEnv) -> 

exactly_correspond(
  compile(Source, Compiler, EnvEffects, ExecEnv, 

TargetEnv),
  Source, Lang, TargetEnv).
If some Source (in language Lang) is compiled by a 
compiler that accurately translates it, then the resulting 
executable exactly corresponds to the original Source.
exactly_correspond(Executable, Source, Lang, RunOn) iff 
Executable exactly implements source code Source in 
language Lang when run on RunOn.
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sP_compiles_sA

accurately_translates(GoodCompilerLangP, lsP, sP, 
EnvEffectsMakeP, ExecEnv, TargetEnv) ->

accurately_translates(
 compile(sP, GoodCompilerLangP, EnvEffectsMakeP, 

ExecEnv, TargetEnv),
 lsA, sA, EnvEffectsP, TargetEnv, eArun).

 Source sP (written in language lsP) must define a 
compiler that, if accurately compiled (by some 
GoodCompilerLangP), would be suitable for 
compiling sA.
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Proof #2

• Proof #1 not useful if goal (equality) never occurs
• Proof #2 proves that equality will occur in a benign 

environment given reasonable assumptions:
– Goal always_equal:  cA = stage2.

• Requires 9 assumptions:
– 4 same: definition_stage1, definition_stage2, 

cT_compiles_sP, define_exactly_correspond
• Unused from previous: sP_compiles_sA

– definition_cA
– cP_corresponds_to_sP (see proof 3!)
– define_compile
– sP_portable_and_deterministic
– define_portable_and_deterministic
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definition_cA and
cP_corresponds_to_sP

cA = compile(sA, cP, eAeffects, eA, eArun).
exactly_correspond(cP, sP, lsP, eA).

The first follows from the figure.
The second is an assumption based on the figure.  It is 

phrased this way so that no grandparent cGP is strictly 
required (perhaps the compilation was done by hand).  
Proof #3 will show how we can prove this is true if there 
is a grandparent cGP.
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define_compile

 compile(Source, Compiler, EnvEffects, RunOn, Target) = 
extract(converttext(run(Compiler, retarget(Source, 
Target), EnvEffects, RunOn), RunOn, Target)).

For proof #2, we need more information about 
compilation, and we must deal with potentially-different 
text encodings.

To compile, retarget source for target, then run Compiler, 
input Source, on RunOn.  Convert text format from 
“RunOn” to “Target”, and extract only executables.
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sP_portable_and_deterministic

portable_and_deterministic(sP, lsP, retarget(sA, eArun)).

sP is deterministic: Same input produces same output. 
Avoids all non-deterministic capabilities of language 
lsP, or uses them only in ways that will not affect the 
output of the program.

sP is portable; it only uses the portable constructs of lsP 
(the ones that are true on different environments)

The above only need to be true when compiling the 
retargeted sA
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define_portable_and_deterministic

( portable_and_deterministic(Source, Language, Input) &
   exactly_correspond(Executable1, Source, Language, 

Environment1) &
   exactly_correspond(Executable2, Source, Language, 

Environment2)) ->
     ( converttext(run(Executable1, Input, EnvEffects1, 

Environment1), Environment1, Target) =
       converttext(run(Executable2, Input, EnvEffects2, 

Environment2), Environment2, Target))
If source code deterministic & portable, and two executables 
both exactly correspond to it, then those executables - when 
given the same input - produce the same output when run on 
their respective environments (convert text to Target format).  
This only needs to be true for the specific input Input.
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Example of 
define_portable_and_deterministic

• Given this portable C source:
#include <stdio.h>
main() {

int a;
scanf("%d", &a);
a = a + 1;
printf("%d\n", a);

}
• And different, correct, deterministic C compilers:

– Resulting executables will usually differ
– Running executables produces the same results 

(modulo text encoding) if the input does not cause 
portability issues (e.g., portable range of int)
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Proof #3

• Proof #3 proves cP_corresponds_to_sP when 
there’s a grandparent (common case) & benign 
circumstances:
– exactly_correspond(cP, sP, lsP, eA).

• This was an assumption of proof #2
– Separately-proved assumption so we don’t have to 

have a grandparent cGP
• Requires 3 assumptions:

– 1 reused: define_exactly_correspond
– definition_cP
– cGP_compiles_sP
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definition_cP and
cGP_compiles_sP

 cP = compile(sP, cGP, ePeffects, eP, eA).
 all EnvEffects accurately_translates(cGP, lsP, sP, 

EnvEffects, eP, eA).

These are just like definition_cA (follows from figure) 
and cT_compiles_sP.



55

Backup
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What does DDC not address?

• Passing DDC process shows source and executable, 
not that executable non-malicious
– Still useful – now you can focus on source review

• Less useful if source review can’t find malicious code
– Concern is “maliciously misleading” source code
– Believe maliciously misleading can be countered, but 

fully addressing this is out of scope
– DDC still helpful in countering unintentional error

• Determining if corruption is intentional (malicious)
• DDC results will differ if proof #2 assumptions do not 

hold... but finding out why can be difficult
– Scale and complexity.  Still, can do it, even with GCC
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Contributions to the field

• “Trusting trust” is a serious, well-known attack
– Considered unsolveable since 1974.  “Paraphrase” 

& “recompile” approach might fix, or might 
introduce the problem

– Could not accumulate non-corruption evidence
– Henry Spencer had promising idea, but no evidence

• Dissertation establishes a useful countermeasure:
– Describes process & assumptions in detail
– Formally proves
– Demonstrates it can be done (inc. large, malicious)
– Explains how to expand & apply in varying cases

• Major result in computer security – crushes what 
was considered a fundamental vulnerability
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Timestamps

• Some formats (e.g., “.a”) embed timestamps
– Makes compiling non-deterministic (recompiling 

produces different results)
• Simple solution: use formats that don’t

– ELF “.o” format does not include timestamps
• If had to handle embedded timestamps:

– Could use “=” operator modified to ignore them
• But must then show that these timestamps do 

not affect execution (more difficult)
– Could rig functions for getting current time so that 

they produced repeatable results
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What have I learned?

• Formal methods & tools
– Much greater understanding of specification 

languages and notations
– Consider the “weakest” useful notation, e.g., first-

order vs. higher-order (more automatable)
– Prefer a prover with verifier
– Start with simple world model, prove, then build up

• “Foundations of mathematics” issues of 1900s
– “Trusting trust” attack builds on self-reference, as 

does Liar’s paradox, Russell’s paradox, etc.
– The logic systems that were built in the process of 

addressing them (FOL, etc.) also helped here!
• Debugging big compilers is painful
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Key to large proof graphs

• Rectangles are assumptions
• Octagon is goal
• Rest are steps; arrows flow into uses
• Proof-by-contradiction

– Negates goal, then shows that it leads to “always 
false” $F.
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ACSAC paper: Big positive splash!

• Published Proceedings of the Twenty-First Annual 
Computer Security Applications Conference (ACSAC), 
Dec 2005, “Countering Trusting Trust through Diverse 
Double-Compiling”

• Immediately became required reading in at least two 
Spring 2006 courses
– Northern Kentucky University's CSC 593
– GMU’s IT 962

• Referenced in Bugtraq, comp.risks (Neumann's Risks 
digest), Lambda the ultimate, SC-L (the Secure Coding 
mailing list), LinuxSecurity.com, Chi Publishing's 
Information Security Bulletin, Wikipedia, OWASP

• Bruce Schneier's weblog and Crypto-Gram
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Ken Thompson’s comments

> good to hear from you. i have, of coarse, read 
your DDC [ACSAC] paper. from a theoretical point 
of view, i think it is very nice...
> but from a practical point, i think the cure is at 
least as bad as the disease.†

Makes 3 points about DDC per ACSAC paper
– He had not read dissertation at the time, since it had 

just come out
– Reasonable comments, but I believe there are 

reasonable responses too

†Capitalization & punctuation as per Thompson
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Ken Thompson’s comments 
(continued)

> 1. there are very few people in a position to widely install and 
distribute a 'trust' bug. i think the threat is close to zero.  certainly 
the threat is much smaller than the distribution of binary-only code 
that is so prevalent on the net today. how do you know that one of 
the norton updates, microsoft patches, flash or adobe downloads 
doesnt contain malicious code? routinely you get megabytes of 
code off the net and then type your system password to install it. if i 
were a bad guy, i would take the path of least resistance and buy off 
someone at adobe.

• Few people that are supposed to be in such a position, but 
subversion of development environments can yield many more

• “Binary-only” code historically widespread, but OSS gaining
• Yes, there are other attacks that are currently easier, but there are 

known detection techniques & countermeasures for the others
– If suppliers & users decide countering them is important, such 

techniques can be applied...
– But no point if there’s an undetectable/uncounterable attack
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Ken Thompson’s comments 
(continued)

> 2. there are a lot more targets than just the C compiler and there 
are a lot more disease vectors than the C compiler. there is SH, C++, 
CPP, LD, LIBC, AS, AR, LINUX, JAVA, PYTHON, etc, etc, etc. each of 
these would have to be generated from scratch with a separate 
trusted vector. each one would be more difficult than your TCC 
example, while all of them would be close to impossible. i dont 
know how to even find all the potential targets.

• Dissertation uses GCC C compiler, which is more complex
• True that it’s not trivial, but now that DDC exists:

– Developers can include DDC as one of their tests
– Developers can write software to simplify DDC (e.g., standards)

• Can grow to apply DDC to entire Linux distribution
– That would be adequate for many

• If no executable stored (e.g., many interpreted languages like SH), 
there’s no issue; there is no hidden executable for the attack
– In some cases (e.g., Python), erasing caches eliminates attack
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Ken Thompson’s comments 
(continued)

> 3. operationally, it will be hard to keep the trusted vectors all up to 
date. a lot of the targets are moving targets that are distributed from 
one source. getting and maintaining a trusted version will be hard. 
keeping everything working will be super-human.

• If “trusted vectors”=“trusted compilers”, not serious problem
– Only need to compile one/few programs; little to keep up
– Performance is irrelevant
– Developers of software-under-test may limit the code constructs 

(e.g., standards, easily-implemented) to ease DDC application
• If “trusted vectors”=“tested compilers”, not serious problem

– DDC is detection technique, so it can be used after-the-fact
– Attackers won't know when DDC will be used & will know that 

they can be detected, greatly reducing attack incentive
> again, i really enjoyed your paper. thanks for thinking of me.

• I thank Thompson for (1) A clear explanation & demo of the attack, 
and (2) creating Unix—both are key contributions to the field
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Problems unsolved with Fedora Core
(and probably true in general)

• Lots of “Edison successes”
• Vendor does not record exact recompilation info

– Compilers & libraries written by different people, unsync
– “Good practice” says change one component at a time, and 

once it works don’t change it (inc. its binary)
• Different library binaries built at different times by different 

versions of compiler, inc. in-house versions
• Exact order of recompilations not recorded, so no way to 

reproduce exactly what’s distributed
• Even if did, multi-week runs not helpful

– Massive transitive dependencies
• FC4 gcc build depends on XFree86, not on CD
• Result: compiler depends on fontconfig (!)

• Without exact info, cannot regenerate compiler
– Vendors won’t capture info or change process until demo’d

• Solution: Simulate distribution to capture info
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Broader implications

• Practical counter for trusting trust attack
• Can expand to TCB, whole OS, & prob. hardware
• Governments could require info for evals

– Receive all source code, inc. build instructions:
• Of compilers: so can check them this way
• Of non-compilers: check by recompiling

– Could establish groups to check major compiler 
releases for subversion

• Insist languages have public unpatented 
specifications (anyone can implement, any license)

• Source code examination now justifiable
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Early use of proof tools

• First proofs by hand
– Painful to do without tracking environments
– Easily argued against: “Error somewhere”

• PVS: Nice tool!
– Supports higher-order logic (HOL)

• Compilers are functions... that produce other 
compilers/functions

– Supports typing (counters some errors)
– Required much manual “steering” to get proofs

• Obtained some proofs, but still painful
– No separate verification tool
– Over time, found did not need HOL or types

• Simpler logic → more-automated tools
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Self-reference & feedback are powerful, 
but can lead to problems & paradoxes

“This sentence is false”

Russell’s
paradox
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Hardware

• BIOS/microcode is software
– DDC still applies trivially

• DDC unnecessary to counter direct subversion of 
hardware components (not trusting trust attack)

• If hardware is subverted so it intentionally 
subverts the implementation process of other 
software/hardware, that is a trusting trust attack
– Appears that we can apply DDC, but there are some 

issues...
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Applying DDC to hardware to counter 
trusting trust attack

• Requires 2nd implementation as trusted compiler
– Alternative hardware compiler, simulated chip & simulator

• Requires “equality” test
– Tool: Perhaps scanning electron microscope,  scanning 

transmission electron microscope (STEM), use focused ion 
beam, or a tool that performs optical phase array shifting

– Maybe use superposition—detect phase changes (diffraction)
– Issue: Real chips have defects – false positive issues

• Requires knowing correct result (legal problems)
– Often cell libraries provided to engineer are not the same as 

what is used in the chip... “real” libraries proprietary
– “IP cores” hide information about chip subcomponents
– Quantum effect error corrections for very high densities 

considered proprietary by correctors
• Only shows the chip-under-test is good
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For more information

• For more information, see:
– http://www.dwheeler.com/trusting-trust

Credits: All photographic images are from Wikipedia, except for the picture of 
“Baby”.  That picture is from the Manchester SSEM photo gallery: 
http://www.cs.man.ac.uk/CCS/ssem/ssemgall.htm
The images are used on the basis of U.S. “fair use”:
1. Purpose/character: The presentation purpose is nonprofit educational use
2. Nature of the work: Images of Baby and ENIAC used as facts
3. Amount in containing work: The images are a small proportion of the work
4. Effect on market: No expected effect on their market value

This presentation is released under the Creative Commons CC-BY-SA 3.0 
license (unported), which is the same as Wikipedia and thus there cannot be a 
license issue with any Wikipedia figures.

http://www.dwheeler.com/trusting-trust
http://www.cs.man.ac.uk/CCS/ssem/ssemgall.htm
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