
1

Countering Trusting Trust
through Diverse Double-Compiling

David A. Wheeler

February 28, 2006
(Minor update from December 2, 2005)

http://www.dwheeler.com/trusting-trust

This presentation contains the views of the author and does not necessarily indicate
endorsement by IDA, the U.S. government, or the U.S. DoD.

2

Outline

• Trusting trust attack
– What it is
– Attacker motivations
– Triggers & payloads

• Inadequate solutions & related work
• Solution: Diverse double-compiling (DDC)

– What it is
– Why it works (assumptions, justification)
– How to increase diversity
– Practical challenges

• Demo: tcc
• Limitations & broader implications

3

Trusting trust attack

Compiler
executable
(malicious)

Critical program
(malicious)

Critical program
source code “login”

Analysis program
source code

Compiler
source code

Analysis program
(malicious)
Compiler
executable
(malicious)

Trustworthy source… … malicious binaries

1974: Karger & Schell
1984: Ken Thompson. Demo’d (inc. disassembler), undetected

Fundamental security problemFundamental security problem

Perpetuates

4

Attacker motivations

• Huge benefits – Controlling a compiler
controls everything it compiles

– Controlling 2-3 compilers would control almost
every computer worldwide

• Risks low – no viable detection technique
• Costs low...medium

– Requires one-time write of trusted binary
• Not necessarily easy, but someone can, one-time,

& not designed to withstand determined attack
– Even if costs were high, the power to control

every computer would be worth it to some

5

Triggers & payloads

• Attack depends on triggers & payloads
– Trigger: code detects condition for performing

malicious event (in compilation)
– Payload: code performs malicious event (i.e.,

inserts malicious code)
• Triggers or payloads can fail

– Change in source can disable trigger/payload
• Attackers can easily counter

– Insert multiple attacks, each narrowly scoped
– Refresh periodically via existing compromises

6

Inadequate solutions & Related work

• Manual binary review: Size, subverted tools
• Automated review / proof of binaries: Hard
• Recompile compiler yourself: Fails if orig.

compiler malicious, massive diligence
• Interpreters just move attack location
• Draper/McDermott: Compile paraphrased

source or with 2nd compiler, then recompile
– Any who care must recompile their compilers
– Can't accumulate trust – can still get subverted
– Helps; another way to use 2nd compiler?

 1

7

Solution: Diverse double-compiling

• Developed by Henry Spencer in 1998
– Check if compiler can self-regenerate
– Compile source code twice: once with a second

“trusted” compiler, then again using result
– If result bit-for-bit identical to original, then

source and binary correspond
• Never described/examined/justified in detail
• Never tried

8

Diverse double-compiling in pictures

Key

n

Compiler X

 Source
Code
SC

c(sA,A)

1

c(sA,T)

2

Diverse
double-
compile

sA

(Source
code

for A)

A (Compiler under test)

0
Self-regenerate?

Other
input

c(sA,c(sA,T))

Compilation
Result c(SC, X)

T (Trusted Compiler)

Compare1

Can A regenerate?

Does sA represent A?Compare2

9

Why does it work?

Assuming:
1. Have trusted: compiler T, DDC environment,

comparer, process to get sA & A
Trusted = triggers/payloads, if any, are different

2. T has same semantics as A for what's in sA

3. Flags etc. affecting output identical
4. Compiler sA deterministic (control seed if random)

Then:
1. c(sA,T) functionally same as A – same source code!
2. If A malicious, doesn't matter – never run in DDC!
3. Final result bit-for-bit equal iff sA represents A – only

an untainted compiler, with identical functionality,
creates the final result! 10

How to increase diversity

• Trusted Compiler T must not have
triggers/payloads for compiler A

• Could prove T's binary – hard
• Alternative: increase diversity

– Compiler implementation (maximally different)
– Time (esp. old compiler as trusted compiler)
– Environment
– Source code mutation/paraphrasing

11

Practical challenges

• Uncontrolled nondeterminism
• May be no alternative compiler that can handle s

– Can create, or hand-preprocess
• “Pop-up” attack

– Attacker includes self-perpetuating attack in only
some versions (once succeeds, it disappears)

– Defenders must thoroughly examine every version
they accept, not just begin/end points

• Multiple compiler components
• Malicious environment? Redefine A as OS
• Inexact comparison (e.g., date/time stamp)

12

Demo: tcc

• Performed on small C compiler, tcc
– Separate runtime library, handle in pieces

• tcc defect: fails to sign-extend 8-bit casts
– x86: Constants -127..128 can be 1 byte (vs. 4)
– tcc detects this with a cast (prefers short form)
– tcc bug – cast produces wrong result, so tcc

compiled-by-self always uses long form
• tcc junk bytes: long double constant

– Long double uses 10 bytes, stored in 12 bytes
– Other two “junk” bytes have random data

• Fixed tcc, technique successfully verified fixed tcc
• Used verified fixed tcc to verify original tcc

It works!It works!

 2

13

Diverse double-compilation of tcc

C
om

pare1

tcc

Diverse Double-compile

c(stcc,tcc)
stcc

c(slibtcc1,tcc)

libtcc1

Self-
regen?

slibtcc1

gcc

1:1
1:0

2:0
2:1 Stage2

Stage1

c(stcc,gcc)

0:1
0:0

C
om

pare2

(Runtime)

(Rest of
compiler)

c(slibtcc1,gcc)

c(slibtcc1,c(stcc,gcc))c(stcc,c(stcc,gcc))

Must handle
real compilers
in pieces;
the approach
works

14

Limitations

• Not absolute proof (unless T & environment proved)
– But you can make as strong as you wish
– Hard to overcome & can use more tests/diversity

• Only shows source & binary correspond
– Could still have malicious code in source
– But we have techniques to address that!

• A's source code must be available (easier for FLOSS)
• Source/binary correspondence primarily useful if you

can see compiler source
• Not yet demonstrated on larger scale – doing that now
• Easier if language standard & no software patents

– Visual Basic patent app for “isNot” operator

15

Broader implications

• Practical counter for trusting trust attack
• Can expand to TCB, whole OS, & prob. hardware
• Governments could require info for evals

– Receive all source code, inc. build instructions:
• Of compilers: so can check them this way
• Of non-compilers: check by recompiling

– Could establish groups to check major compiler
releases for subversion

• Insist languages have public unpatented
specifications (anyone can implement, any license)

• Source code examination now justifiable
16

In the News...

• Published Proceedings of the Twenty-First Annual
Computer Security Applications Conference (ACSAC),
December 2005, “Countering Trusting Trust through
Diverse Double-Compiling”

• Required reading: Northern Kentucky University's CSC
593: Secure Software Engineering Seminar, Spring 06

• Referenced in Bugtraq, comp.risks (Neumann's Risks
digest), Lambda the ultimate, SC-L (the Secure Coding
mailing list), LinuxSecurity.com, Chi Publishing's
Information Security Bulletin, Wikipedia ("Backdoor"),
Open Web Application Security Project (OWASP)

• Bruce Schneier's weblog and Crypto-Gram

17

Recent Work: Relaxing Constraint:
Compiler Need not be Self-compiled

• Instead of self-
compiling, can use
parent compiler P

– P may be just a
different version of A

• Source code s is
now s

A
 union s

P

– Needs examining
– If similar, diff

• Can be used to
“break” a loop

A0=c(sA,P)

1

P1=c(sP,T)

2

Diverse
double-
compile

sA

P (Parent compiler)

0
Self-regenerate?

A2=c(sA,c(sP,T))

T (Trusted Compiler)

Compare1

Compare2

Compiler A
(malicious?)

s
P

18

Backup

 3

19

Can DDC be used with hardware?

• Probably; not as easy for pure hardware
• Requires 2nd implementation T

– Alternative hardware compiler, simulated chip
• Requires “equality” test

– Scanning electron microscope, focused ion beam
• Requires knowing exact correct result

– Often cell libraries provided to engineer are not the
same as what is used in the chip

– Quantum effect error corrections for very high
densities considered proprietary by correctors

• Only shows the chip-under-test is good 20

Can this scale up?

• Believe so; best proved by demonstration
• Working with“real” compiler: gcc
• Step 1: Real compiler, less diversity

– A = Fedora Core 4’s gcc4
– T/Environment = gcc3/Fedora Core 3
– Clarifies process, identifies dependencies

• Step 2: Real compiler, massive diversity
– A = Fedora Core 4’s gcc4
– T/Environment = SGI IRIX

• May change as learn more
– Big challenge: Vendors don't store info

21

Threat: Trusting trust attack

• First publicly noted by Karger & Schell, 1974
• Publicized by Ken Thompson, 1984

– Back door in “login” source code would be obvious
– Could insert back door in compiler source; login's

source is clean, compiler source code is not
– Modify compiler to also detect itself, and insert

those attacks into compilers' binary code
– Source code for login and compiler pristine, yet

attack perpetuates even when compiler modified
– Can subvert analysis tools too (e.g., disassembler)
– Thompson performed experiment - never detected

Fundamental security problemFundamental security problem

 4

1

Countering Trusting Trust
through Diverse Double-Compiling

David A. Wheeler

February 28, 2006
(Minor update from December 2, 2005)

http://www.dwheeler.com/trusting-trust

This presentation contains the views of the author and does not necessarily indicate
endorsement by IDA, the U.S. government, or the U.S. DoD.

2

Outline

• Trusting trust attack
– What it is
– Attacker motivations
– Triggers & payloads

• Inadequate solutions & related work
• Solution: Diverse double-compiling (DDC)

– What it is
– Why it works (assumptions, justification)
– How to increase diversity
– Practical challenges

• Demo: tcc
• Limitations & broader implications

3

Trusting trust attack

Compiler
executable
(malicious)

Critical program
(malicious)

Critical program
source code “login”

Analysis program
source code

Compiler
source code

Analysis program
(malicious)
Compiler
executable
(malicious)

Trustworthy source… … malicious binaries

1974: Karger & Schell
1984: Ken Thompson. Demo’d (inc. disassembler), undetected

Fundamental security problemFundamental security problem

Perpetuates

4

Attacker motivations

• Huge benefits – Controlling a compiler
controls everything it compiles

– Controlling 2-3 compilers would control almost
every computer worldwide

• Risks low – no viable detection technique
• Costs low...medium

– Requires one-time write of trusted binary
• Not necessarily easy, but someone can, one-time,

& not designed to withstand determined attack
– Even if costs were high, the power to control

every computer would be worth it to some

5

Triggers & payloads

• Attack depends on triggers & payloads
– Trigger: code detects condition for performing

malicious event (in compilation)
– Payload: code performs malicious event (i.e.,

inserts malicious code)
• Triggers or payloads can fail

– Change in source can disable trigger/payload
• Attackers can easily counter

– Insert multiple attacks, each narrowly scoped
– Refresh periodically via existing compromises

6

Inadequate solutions & Related work

• Manual binary review: Size, subverted tools
• Automated review / proof of binaries: Hard
• Recompile compiler yourself: Fails if orig.

compiler malicious, massive diligence
• Interpreters just move attack location
• Draper/McDermott: Compile paraphrased

source or with 2nd compiler, then recompile
– Any who care must recompile their compilers
– Can't accumulate trust – can still get subverted
– Helps; another way to use 2nd compiler?

7

Solution: Diverse double-compiling

• Developed by Henry Spencer in 1998
– Check if compiler can self-regenerate
– Compile source code twice: once with a second

“trusted” compiler, then again using result
– If result bit-for-bit identical to original, then

source and binary correspond
• Never described/examined/justified in detail
• Never tried

8

Diverse double-compiling in pictures

Key

n

Compiler X

 Source
Code
SC

c(sA,A)

1

c(sA,T)

2

Diverse
double-
compile

sA

(Source
code

for A)

A (Compiler under test)

0
Self-regenerate?

Other
input

c(sA,c(sA,T))

Compilation
Result c(SC, X)

T (Trusted Compiler)

Compare1

Can A regenerate?

Does sA represent A?Compare2

9

Why does it work?

Assuming:
1. Have trusted: compiler T, DDC environment,

comparer, process to get sA & A
Trusted = triggers/payloads, if any, are different

2. T has same semantics as A for what's in sA

3. Flags etc. affecting output identical
4. Compiler sA deterministic (control seed if random)

Then:
1. c(sA,T) functionally same as A – same source code!
2. If A malicious, doesn't matter – never run in DDC!
3. Final result bit-for-bit equal iff sA represents A – only

an untainted compiler, with identical functionality,
creates the final result!

10

How to increase diversity

• Trusted Compiler T must not have
triggers/payloads for compiler A

• Could prove T's binary – hard
• Alternative: increase diversity

– Compiler implementation (maximally different)
– Time (esp. old compiler as trusted compiler)
– Environment
– Source code mutation/paraphrasing

11

Practical challenges

• Uncontrolled nondeterminism
• May be no alternative compiler that can handle s

– Can create, or hand-preprocess
• “Pop-up” attack

– Attacker includes self-perpetuating attack in only
some versions (once succeeds, it disappears)

– Defenders must thoroughly examine every version
they accept, not just begin/end points

• Multiple compiler components
• Malicious environment? Redefine A as OS
• Inexact comparison (e.g., date/time stamp)

12

Demo: tcc

• Performed on small C compiler, tcc
– Separate runtime library, handle in pieces

• tcc defect: fails to sign-extend 8-bit casts
– x86: Constants -127..128 can be 1 byte (vs. 4)
– tcc detects this with a cast (prefers short form)
– tcc bug – cast produces wrong result, so tcc

compiled-by-self always uses long form
• tcc junk bytes: long double constant

– Long double uses 10 bytes, stored in 12 bytes
– Other two “junk” bytes have random data

• Fixed tcc, technique successfully verified fixed tcc
• Used verified fixed tcc to verify original tcc

It works!It works!

13

Diverse double-compilation of tcc

C
om

pare1

tcc

Diverse Double-compile

c(stcc,tcc)
stcc

c(slibtcc1,tcc)

libtcc1

Self-
regen?

slibtcc1

gcc

1:1
1:0

2:0
2:1 Stage2

Stage1

c(stcc,gcc)

0:1
0:0

C
om

pare2

(Runtime)

(Rest of
compiler)

c(slibtcc1,gcc)

c(slibtcc1,c(stcc,gcc))c(stcc,c(stcc,gcc))

Must handle
real compilers
in pieces;
the approach
works

14

Limitations

• Not absolute proof (unless T & environment proved)
– But you can make as strong as you wish
– Hard to overcome & can use more tests/diversity

• Only shows source & binary correspond
– Could still have malicious code in source
– But we have techniques to address that!

• A's source code must be available (easier for FLOSS)
• Source/binary correspondence primarily useful if you

can see compiler source
• Not yet demonstrated on larger scale – doing that now
• Easier if language standard & no software patents

– Visual Basic patent app for “isNot” operator

15

Broader implications

• Practical counter for trusting trust attack
• Can expand to TCB, whole OS, & prob. hardware
• Governments could require info for evals

– Receive all source code, inc. build instructions:
• Of compilers: so can check them this way
• Of non-compilers: check by recompiling

– Could establish groups to check major compiler
releases for subversion

• Insist languages have public unpatented
specifications (anyone can implement, any license)

• Source code examination now justifiable

16

In the News...

• Published Proceedings of the Twenty-First Annual
Computer Security Applications Conference (ACSAC),
December 2005, “Countering Trusting Trust through
Diverse Double-Compiling”

• Required reading: Northern Kentucky University's CSC
593: Secure Software Engineering Seminar, Spring 06

• Referenced in Bugtraq, comp.risks (Neumann's Risks
digest), Lambda the ultimate, SC-L (the Secure Coding
mailing list), LinuxSecurity.com, Chi Publishing's
Information Security Bulletin, Wikipedia ("Backdoor"),
Open Web Application Security Project (OWASP)

• Bruce Schneier's weblog and Crypto-Gram

17

Recent Work: Relaxing Constraint:
Compiler Need not be Self-compiled

• Instead of self-
compiling, can use
parent compiler P

– P may be just a
different version of A

• Source code s is
now s

A
 union s

P

– Needs examining
– If similar, diff

• Can be used to
“break” a loop

A0=c(sA,P)

1

P1=c(sP,T)

2

Diverse
double-
compile

sA

P (Parent compiler)

0
Self-regenerate?

A2=c(sA,c(sP,T))

T (Trusted Compiler)

Compare1

Compare2

Compiler A
(malicious?)

s
P

18

Backup

19

Can DDC be used with hardware?

• Probably; not as easy for pure hardware
• Requires 2nd implementation T

– Alternative hardware compiler, simulated chip
• Requires “equality” test

– Scanning electron microscope, focused ion beam
• Requires knowing exact correct result

– Often cell libraries provided to engineer are not the
same as what is used in the chip

– Quantum effect error corrections for very high
densities considered proprietary by correctors

• Only shows the chip-under-test is good

20

Can this scale up?

• Believe so; best proved by demonstration
• Working with“real” compiler: gcc
• Step 1: Real compiler, less diversity

– A = Fedora Core 4’s gcc4
– T/Environment = gcc3/Fedora Core 3
– Clarifies process, identifies dependencies

• Step 2: Real compiler, massive diversity
– A = Fedora Core 4’s gcc4
– T/Environment = SGI IRIX

• May change as learn more
– Big challenge: Vendors don't store info

21

Threat: Trusting trust attack

• First publicly noted by Karger & Schell, 1974
• Publicized by Ken Thompson, 1984

– Back door in “login” source code would be obvious
– Could insert back door in compiler source; login's

source is clean, compiler source code is not
– Modify compiler to also detect itself, and insert

those attacks into compilers' binary code
– Source code for login and compiler pristine, yet

attack perpetuates even when compiler modified
– Can subvert analysis tools too (e.g., disassembler)
– Thompson performed experiment - never detected

Fundamental security problemFundamental security problem

