Countering Trusting Trust
through Diverse Double-Compiling

David A. Wheeler

February 28, 2006
(Minor update from December 2, 2005)

http://www.dwheeler.com/trusting-trust

“This presentation contains the views of the author and does not necessarily indicate
endorsement by IDA, the U.S. government, or the U.S. DoD.

Trusting trust attack

Trustworthy source... ... malicious binaries

Critical program
ource code “login”.

Analysis program

source code

Compiler

source code .

1974: Karger & Schell Perpetuafes
1984: Ken Thompson. Demo’d (inc. disassembler), undetected

Fundamental security problem s

Triggers & payloads

» Attack depends on triggers & payloads

- Trigger: code detects condition for performing
malicious event (in compilation)

- Payload: code performs malicious event (i.e.,
inserts malicious code)

» Triggers or payloads can fail
- Change in source can disable trigger/payload
» Attackers can easily counter
- Insert multiple attacks, each narrowly scoped
- Refresh periodically via existing compromises

QOutline

Trusting trust attack

- Whatitis

- Attacker motivations

- Triggers & payloads

Inadequate solutions & related work
Solution: Diverse double-compiling (DDC)
- What it is

- Why it works (assumptions, justification)

- How to increase diversity

- Practical challenges

Demo: tcc

Limitations & broader implications 2

Attacker motivations

Huge benefits — Controlling a compiler

controls everything it compiles

- Controlling 2-3 compilers would control almost
every computer worldwide

Risks low — no viable detection technique

Costs low...medium

- Requires one-time write of trusted binary

« Not necessarily easy, but someone can, one-time,
& not designed to withstand determined attack

- Even if costs were high, the power to control
every computer would be worth it to some

Inadequate solutions & Related work

Manual binary review: Size, subverted tools
Automated review / proof of binaries: Hard
Recompile compiler yourself: Fails if orig.
compiler malicious, massive diligence
Interpreters just move attack location
Draper/McDermott: Compile paraphrased
source or with 2" compiler, then recompile
- Any who care must recompile their compilers

- Can't accumulate trust — can still get subverted
- Helps; another way to use 2" compiler?

Solution: Diverse double-compiling

* Developed by Henry Spencer in 1998
- Check if compiler can self-regenerate
- Compile source code twice: once with a second
“trusted” compiler, then again using result
- If result bit-for-bit identical to original, then
source and binary correspond

* Never described/examined/justified in detail
* Never tried

Why does it work?

Assuming:
1.Have trusted: compiler T, DDC environment,
comparer, process to get s, & A
Trusted = triggers/payloads, if any, are different
2.T has same semantics as A for what's in s,
3. Flags etc. affecting output identical
4.Compiler s, deterministic (control seed if random)
Then:
1.c(s,,T) functionally same as A — same source code!
2.1f A malicious, doesn't matter — never run in DDC!
3. Final result bit-for-bit equal iff s, represents A — only
an untainted compiler, with identical functionality,

creates the final result! 9

Practical challenges

Uncontrolled nondeterminism

May be no alternative compiler that can handle s

- Can create, or hand-preprocess

* “Pop-up” attack

- Attacker includes self-perpetuating attack in only
some versions (once succeeds, it disappears)

- Defenders must thoroughly examine every version
they accept, not just begin/end points

« Multiple compiler components
« Malicious environment? Redefine A as OS
* Inexact comparison (e.g., date/time stamp)

Diverse double-compiling in pictures

A (Compiler under test)

self—re@ Can A regenerate?
J /"Comparel Key
C(Sa

AX Compiler X
lT (Truétgd Compiler)

Source
Sy] . Code— %&r
(Sourc : Diverse sC
code i double-
for A) c(s,T) compile Compilation

Result ¢(SC, X)

./ Compare2 — 2
cncaT) Does s, represent A?

How to increase diversity

e Trusted Compiler T must not have
triggers/payloads for compiler A

e Could prove T's binary — hard

« Alternative: increase diversity
- Compiler implementation (maximally different)
- Time (esp. old compiler as trusted compiler)
- Environment
- Source code mutation/paraphrasing

Demo: tcc

Performed on small C compiler, tcc

- Separate runtime library, handle in pieces

tcc defect: fails to sign-extend 8-bit casts

- x86: Constants -127..128 can be 1 byte (vs. 4)

- tcc detects this with a cast (prefers short form)

- tcc bu_P — cast produces wrong result, so tcc
compiled-by-self always uses long form

 tcc junk bytes: long double constant
- Long double uses 10 bytes, stored in 12 bytes
- Other two “junk” bytes have random data

» Fixed tcc, technique successfully verified fixed tcc

« Used verified fixed tcc to verify original tcc

1t works!

Diverse double-compilation of tcc Limitations

) | libocl |
e .
(Runtime S r \ 5 * Not absolute proof (unless T & environment proved)
ibtos 4)
(Rest of * | reSe(Iefn? I8 - But you can make as strong as you wish
compiler) Ses b Ir gen) é - Hard to overcome & can use more tests/diversity
| E(Seatc0) " ClSimetoc) + Only shows source & binary correspond
gee \ - Could still have malicious code in source
Stagel \ - But we have techniques to address that!
SR o (S 9 * A's source code must be available (easier for FLOSS)
U|5t an 'Ie) 12 «+ Source/binary correspondence primarily useful if you
real _compl ers o i % can see compiler source
in pieces; i * Not yet demonstrated on larger scale — doing that now
the approach A
* Easier if language standard & no software patents

age2

works . - / N ’ X
Diverse Double-compile - Visual Basic patent app for “isNot” operator
| | 14

(50, C(5,0CC)) e C6e0C0) | 1

Broader implications In the News...

Practical counter for trusting trust attack » Published Proceedings of the Twenty-First Annual
«+ Can expand to TCB, whole OS, & prob. hardware Computer Security Applications Conference (ACSAC),
P . p December 2005, “Countering Trusting Trust through
. Governments could requue‘lnfo fo‘r E\{als . Diverse Double-Compiling”
- Receive all source code, inc. build instructions: Required reading: Northern Kentucky University's CSC
* Of compilers: so can check them this way 593: Secure Software Engineering Seminar, Spring 06
* Of non-compilers: check by recompiling Referenced in Bugtrag, comp.risks (Neumann's Risks
- Could establish groups to check major compiler digest), Lambda the ultimate, SC-L (the Secure Coding
releases for subversion mailing list), LinuxSecurity.com, Chi Publishing's
: : Information Security Bulletin, Wikipedia ("Backdoor"),
Insist languages have public unpatented o ! .
specifications (anyone can implement, any license) Oz Wiely Afpraliesiitem SEsiity Frefzs: (GWASH)
Bruce Schneier's weblog and Crypto-Gram

Source code examination now justifiable

Recent Work: Relaxing Constraint: Backu
Compiler Need not be Self-compiled p

Instead of self-
compiling, can use
parent compiler P s
- P may bejusta :
different version of A
Source code s is
nows, union S, s

P (Parent compiler)
Self-regenerate?

Al =C(SA’p)CETQa,r?%:ompi_ler A
/(malicious?)
J T (Trusted quﬁpiler)
/ Diverse
/ double-
P1=c(s, TY compile
7/

/

- Needs examining
- If similar, diff
Can be used to

/
“break” aloop /Compare2
18

A2=C(s,,C(5,,T)) &

Can DDC be used with hardware?

Probably; not as easy for pure hardware
Requires 2" implementation T

- Alternative hardware compiler, simulated chip
Requires “equality” test

- Scanning electron microscope, focused ion beam
Requires knowing exact correct result

- Often cell libraries provided to engineer are not the
same as what is used in the chip

- Quantum effect error corrections for very high
densities considered proprietary by correctors

Only shows the chip-under-test is good |

Threat: Trusting trust attack

First publicly noted by Karger & Schell, 1974
Publicized by Ken Thompson, 1984
- Back door in “login” source code would be obvious

- Could insert back door in compiler source; login's
source is clean, compiler source code is not

Modify compiler to also detect itself, and insert

those attacks into compilers' binary code

- Source code for login and compiler pristine, yet
attack perpetuates even when compiler modified

- Can subvert analysis tools too (e.g., disassembler)

- Thompson performed experiment - never detected

Fundamental security problem

21

Can this scale up?

Believe so; best proved by demonstration
Working with“real” compiler: gcc

Step 1: Real compiler, less diversity

- A =Fedora Core 4's gcc4

- T/Environment = gcc3/Fedora Core 3

- Clarifies process, identifies dependencies
Step 2: Real compiler, massive diversity
- A =Fedora Core 4's gcc4

- T/Environment = SGI IRIX

May change as learn more

- Big challenge: Vendors don't store info

20

Countering Trusting Trust
through Diverse Double-Compiling

David A. Wheeler

February 28, 2006
(Minor update from December 2, 2005)

http://www.dwheeler.com/trusting-trust

This presentation contains the views of the author and does not necessarily indicate
endorsement by IDA, the U.S. government, or the U.S. DoD.

Outline

e Trusting trust attack
- What it is
- Attacker motivations
- Triggers & payloads

 Inadequate solutions & related work
e Solution: Diverse double-compiling (DDC)
- What itis
- Why it works (assumptions, justification)
- How to increase diversity
- Practical challenges

e Demo: tcc
 Limitations & broader implications 5

Trusting trust attack

Trustworthy source... ... malicious binaries

Critical program
source code “login”

Analysis program
source code

Compiler
source code

Perpetuates

1974 Karger & Schell
1984: Ken Thompson. Demo’d (inc. disassembler), undetected

Fundamental security problem 3

Attacker motivations

 Huge benefits — Controlling a compiler
controls everything it compiles

- Controlling 2-3 compilers would control almost
every computer worldwide

 Risks low — no viable detection technique

 Costs low...medium
- Requires one-time write of trusted binary

 Not necessarily easy, but someone can, one-time,
& not designed to withstand determined attack

- Even if costs were high, the power to control
every computer would be worth it to some

Triggers & payloads

 Attack depends on triggers & payloads

- Trigger: code detects condition for performing
malicious event (in compilation)

- Payload: code performs malicious event (i.e.,
Inserts malicious code)

* Triggers or payloads can fail
- Change in source can disable trigger/payload

» Attackers can easily counter
- Insert multiple attacks, each narrowly scoped
- Refresh periodically via existing compromises

Inadequate solutions & Related work

Manual binary review: Size, subverted tools
Automated review / proof of binaries: Hard

Recompile compiler yourself: Fails if orig.
compiler malicious, massive diligence

Interpreters just move attack location
Draper/McDermott: Compile paraphrased
source or with 2" compiler, then recompile
- Any who care must recompile their compilers

- Can't accumulate trust — can still get subverted
- Helps; another way to use 2" compiler?

Solution: Diverse double-compiling

 Developed by Henry Spencer in 1998

- Check if compiler can self-regenerate

- Compile source code twice: once with a second
“trusted” compiler, then again using result

- If result bit-for-bit identical to original, then
source and binary correspond

 Never described/examined/justified in detail
 Never tried

Diverse double-compiling In pictures

A (Compiler under test)

N

(l) Self-reW Can A regenerate?
Ke
J /Comparel _y
C(Sp A Compiler X
T (Trusted Compiler l
|7 Tsed Compien) Souce nby oy
" | i Code— [N input
(Sourc 1 Diverse sC p
code ; double-
for A) C(SaT) compile Compilation

c(sA,

C(SA’T))

Result ¢(SC, X)

CompareZ ————Does s, represent A?

8

Why does it work?

Assuming:
1. Have trusted: compiler T, DDC environment,
comparer, process to gets, & A
Trusted = triggers/payloads, if any, are different
2.T has same semantics as A for what's in s,

3. Flags etc. affecting output identical
4. Compiler s, deterministic (control seed if random)

Then:
1.c(s,,T) functionally same as A — same source code!

2.1f A malicious, doesn't matter — never run in DDC!

3. Final result bit-for-bit equal iff s, represents A —only

an untainted compiler, with identical functionality,
creates the final result! 9

How to increase diversity

 Trusted Compiler T must not have
triggers/payloads for compiler A

 Could prove T's binary — hard

* Alternative: increase diversity
- Compiler implementation (maximally different)
- Time (esp. old compiler as trusted compiler)
- Environment
- Source code mutation/paraphrasing

10

Practical challenges

 Uncontrolled nondeterminism

May be no alternative compiler that can handle s
- Can create, or hand-preprocess

e “Pop-up” attack

- Attacker includes self-perpetuating attack in only
some versions (once succeeds, it disappears)

- Defenders must thoroughly examine every version
they accept, not just begin/end points

 Multiple compiler components
 Malicious environment? Redefine A as OS
 Inexact comparison (e.g., date/time stamp)

11

Demo: tcc

Performed on small C compiler, tcc

- Separate runtime library, handle in pieces

tcc defect: fails to sign-extend 8-bit casts

- X86: Constants -127..128 can be 1 byte (vs. 4)

- tcc detects this with a cast (prefers short form)

- tcc bug — cast produces wrong result, so tcc
compiled-by-self always uses long form

tcc junk bytes: long double constant

- Long double uses 10 bytes, stored in 12 bytes

- Other two “junk” bytes have random data

Fixed tcc, technique successfully verified fixed tcc
Used verified fixed tcc to verify original tcc

It works! 12

Diverse double-compilation of tcc

_ —— tcc—— libtccl . ~.
(Runtime) v \ S
SiibtccT 00— gaif 3
LN p— 0:1 regen? |2
compiler) | /R
C(Stcc’tCC) C(Slibtccl’t("c) "
gCC A 4 | L
1 1.0
- Stagel’
————| 11 S — O
C(Si1e1,JCC
Must handle Bt 9°C) 3
real compilers [c(se9cC) | =
in pieces; v 2:0 R
Diverse Double-compile
C(Stcc’C(Stcc’gCC)j’ Ccslibtccl’c(stcc’gcc)) 13

Limitations

Not absolute proof (unless T & environment proved)
- But you can make as strong as you wish
- Hard to overcome & can use more tests/diversity
Only shows source & binary correspond
- Could still have malicious code in source
- But we have techniques to address that!
A's source code must be available (easier for FLOSYS)

Source/binary correspondence primarily useful if you
can see compiler source

Not yet demonstrated on larger scale —doing that now
Easier if language standard & no software patents
- Visual Basic patent app for “isNot” operator

14

Broader implications

Practical counter for trusting trust attack
Can expand to TCB, whole OS, & prob. hardware
Governments could require info for evals

- Receive all source code, inc. build instructions:
 Of compilers: so can check them this way
 Of non-compilers: check by recompiling

- Could establish groups to check major compiler
releases for subversion

Insist languages have public unpatented
specifications (anyone can implement, any license)

Source code examination now justifiable

15

In the News...

 Published Proceedings of the Twenty-First Annual
Computer Security Applications Conference (ACSAQC),
December 2005, “Countering Trusting Trust through
Diverse Double-Compiling”

 Required reading: Northern Kentucky University's CSC
593: Secure Software Engineering Seminar, Spring 06

 Referenced in Bugtraq, comp.risks (Neumann's Risks
digest), Lambda the ultimate, SC-L (the Secure Coding
mailing list), LinuxSecurity.com, Chi Publishing's
Information Security Bulletin, Wikipedia ("Backdoor"),
Open Web Application Security Project (OWASP)

« Bruce Schneier's weblog and Crypto-Gram

16

Recent Work: Relaxing Constraint:
Compiler Need not be Self-compiled

* Instead of selt- l P (Parent compiler)
compiling, can use Self-regenerate?
parent compiler P S 0
- P may be just a O[Com are |

different version of A AO=C(s,P) < T #:om_pl_lerA
: ~(malicious?)

* Source Co_de S IS lT (Trusted Compiler)

now s, union s, S Y

.. 1 ~ Diverse
- Needs examining double-
- If similar, diff ‘,P1=C(SP,T,)’” compile

« Can beusedto 2
“break” aloop l Comparez

A2= c(sA,c(sP,T)) L

Can DDC be used with hardware?

 Probably; not as easy for pure hardware

 Requires 2" implementation T

- Alternative hardware compiler, simulated chip
 Requires “equality” test

- Scanning electron microscope, focused ion beam

 Requires knowing exact correct result

- Often cell libraries provided to engineer are not the
same as what is used in the chip

- Quantum effect error corrections for very high
densities considered proprietary by correctors

 Only shows the chip-under-test is good

19

Can this scale up?

Believe so; best proved by demonstration
Working with“real” compiler: gcc

Step 1: Real compiler, less diversity

- A = Fedora Core 4’s gcc4

- T/Environment = gcc3/Fedora Core 3

- Clarifies process, identifies dependencies

Step 2: Real compiler, massive diversity
- A = Fedora Core 4’s gcc4

- T/Environment = SGI IRIX

May change as learn more

- Big challenge: Vendors don't store info ”

Threat: Trusting trust attack

* First publicly noted by Karger & Schell, 1974
 Publicized by Ken Thompson, 1984

Back door in “login” source code would be obvious

Could insert back door in compiler source; login's
source is clean, compiler source code is not

Modify compiler to also detect itself, and insert
those attacks into compilers' binary code

Source code for login and compiler pristine, yet
attack perpetuates even when compiler modified

Can subvert analysis tools too (e.g., disassembler)
Thompson performed experiment - never detected

Fundamental security problem

21

