
Countering Trusting Trust through Diverse Double-Compiling

David A. Wheeler
Institute for Defense Analyses

dwheeler @ ida.org

Abstract

An Air Force evaluation of Multics, and Ken
Thompson’s famous Turing award lecture
“Reflections on Trusting Trust,” showed that
compilers can be subverted to insert malicious Trojan
horses into critical software, including themselves. If
this attack goes undetected, even complete analysis of
a system’s source code will not find the malicious code
that is running, and methods for detecting this
particular attack are not widely known. This paper
describes a practical technique, termed diverse
double-compiling (DDC), that detects this attack and
some compiler defects as well. Simply recompile the
source code twice: once with a second (trusted)
compiler, and again using the result of the first
compilation. If the result is bit-for-bit identical with
the untrusted binary, then the source code accurately
represents the binary. This technique has been
mentioned informally, but its issues and ramifications
have not been identified or discussed in a peer-
reviewed work, nor has a public demonstration been
made. This paper describes the technique, justifies it,
describes how to overcome practical challenges, and
demonstrates it.

1. Introduction

Many product security evaluations examine
source code, under the assumption that the source code
accurately represents the product being examined.
Naïve developers presume that this can be assured
simply by recompiling the source code to see if the
same binary results.

Unfortunately, if an attacker can modify the
binary file of the compiler, this is insufficient. An
attacker who can control the compiler binary (directly
or indirectly) can render source code evaluations
worthless, because the compiler can re-insert
malicious code into anything it compiles—including
itself.

Karger and Schell provided the first public
description of the problem. They noted in their
examination of Multics vulnerabilities that a
“penetrator could insert a trap door into the...

compiler... [and] since the PL/I compiler is itself
written in PL/I, the trap door can maintain itself, even
when the compiler is recompiled. Compiler trap doors
are significantly more complex than the other trap
doors... However, they are quite practical to
implement” [1].

Ken Thompson widely publicized this problem in
his famous 1984 Turing Award presentation
“Reflections on Trusting Trust,” clearly explaining it
and demonstrating that this was both a practical and
dangerous attack. He first described how to modify
the Unix C compiler to inject a Trojan horse, in this
case to modify the operating system login program to
surreptitiously give him root access. He then showed
how to modify and recompile the compiler itself with
an additional Trojan horse devised to detect itself.
Once this is done, the attacks can be removed from the
source code so that no source code—even of the
compiler—will reveal the existence of the Trojan
horse, yet the attacks could persist through
recompilations and cross-compilations of the compiler.
He then stated that “No amount of source-level
verification or scrutiny will protect you from using
untrusted code... I could have picked on any program-
handling program such as an assembler, a loader, or
even hardware microcode. As the level of program
gets lower, these defects will be harder and harder to
detect” [2]. As a demonstration, Thompson
implemented this attack in the C compiler and
successfully subverted another Bell Labs group; the
attack was never detected. Thompson’s demonstration
subverted the login program (for control) and the
disassembler (to hide the attack from disassembly).
The malicious compiler was never released outside
Bell Labs [3].

For source code security evaluations to be
strongly credible, there needs to be a way to justify
that the source code being examined accurately
represents the files being executed—yet this attack
subverts that very claim. Internet Security System’s
David Maynor argues that the risk of these kinds of
attacks is increasing [4][5]; Karger and Schell noted
this was still a problem in 2000 [6], and some
technologists doubt that systems can ever be secure
because of the existence of this attack [7]. Anderson et

al. argue that the general risk of subversion is
increasing [8].

Recently, in several mailing lists and blogs, a
special technique to detect such attacks has been
briefly described, which uses a second (diverse)
“trusted” compiler and two compilation stages. This
paper terms the technique “diverse double-
compiling” (DDC). In DDC, if the final result is bit-
for-bit identical to the original compiler binary, then
the compiler source code accurately represents the
binary. However, there is no peer-reviewed paper
discussing DDC in detail, justifying its effectiveness,
or discussing its ramifications. In addition, there is no
public evidence that DDC has been tried, or a detailed
description of how to perform it in practice. This
paper resolves these problems.

This paper provides background and a description
of the threat, followed by a description of DDC and a
justification for its effectiveness. The next sections
discuss how diversity can be used to increase trust in a
second compiler and how to overcome practical
challenges. The paper then presents a demonstration
of DDC, and closes with ramifications.

2. Background

2.1. Inadequate solutions

Some simple approaches appear to solve the
problem at first glance, yet have significant
weaknesses:
1. Compiler binary files could be manually compared
with their source code. This is impractical given
compilers’ large sizes, complexity, and rate of change.
2. Such comparison could be automated, but
optimizing compilers make such comparisons difficult,
compiler changes make keeping such tools up-to-date
difficult, and the tool’s complexity would be similar to
a compiler’s.
3. A second compiler could compile the source code,
and then the binaries could be compared automatically
to argue semantic equivalence. There is some work in
determining the semantic equivalence of two different
binaries [9], but this is very difficult.
4. Receivers could require that they only receive
source code and then recompile everything themselves.
This fails if the receiver’s compiler is already
malicious. An attacker could also insert the attack into
the compiler’s source; if the receiver accepts it (due to
lack of diligence or conspiracy), the attacker could
remove the evidence in a later version.
5. Programs can be written in interpreted languages.
But eventually an interpreter must be implemented by
machine code, so this simply moves the attack
location.

2.2. Related work

Draper recommends screening out malicious
compilers by writing a “paraphrase” compiler
(possibly with a few dummy statements) or a different
compiler binary, compiling once to remove the Trojan
horse, and then compiling a second time to produce a
Trojan-horse-free compiler [10]. This idea is
expanded upon by McDermott [11], who notes that the
alternative compiler could be a reduced-function
compiler or one with large amounts of code unrelated
to compilation. Lee’s “approach #2” describes most of
the basic process of diverse double-compilation
(DDC), but implies that the results might not be bit-
for-bit identical [12]. Luzar makes a similar point as
Lee, describing how to rebuild a system from scratch
using a different trusted compiler but not noting that
the final result should be bit-for-bit identical if other
factors are carefully controlled [13].

None of these works note that it is possible to
produce a result that is bit-for-bit identical to the
original compiler binary. This is an essential
component of DDC; DDC gains significant advantages
over other approaches because it is easy to determine if
two files are exactly identical. These previous
approaches require each defender to insert themselves
into the compiler creation process (e.g., to recompile
their compiler themselves before using it), which is
often impractical. Resolving this by using a central
trusted build agent simply moves the best point of
attack. In contrast, DDC can be used for after-the-fact
vetting by third parties, it does not require a
fundamental change in the compiler delivery or
installation process, it does not require that all
compiler users receive or recompile compiler source
code, and its evidence can be strengthened using
multiple parties. Also, none of these papers
demonstrate their technique.

Magdsick discusses using different versions of a
compiler and different compiler platforms (CPU and
operating system) to check binaries, but presumes that
the compiler itself will simply be the same compiler
(just a different version). He does note the value of
recompiling “everything” to check it [14]. Anderson
notes that cross-compilation does not help if the attack
is in the compiler [15]. Mohring argues for the use of
recompilation by gcc to check other components,
presuming that the gcc binaries themselves in some
environments would be pristine[16]. He makes no
notice that all gcc implementations used might be
malicious, or of the importance of diversity in
compiler implementation. In his approach different
compiler versions may be used, so outputs would be
“similar” but not identical; this leaves the difficult

problem of comparing binaries for “exact equivalence”
unresolved.

Some effort has been made to develop proofs of
correctness for compilers [17][18][19][20]. Goerigk
argues that this problem requires that proofs of
compilers go down to the resulting binary code [21]
[22]. Such techniques are difficult to apply, even for
simple languages.

There are a number of papers and articles about
employing diversity to aid computer security, though
they generally do not examine how to use diversity to
counter Trojan horses inside compilers or the
compilation environment. Geer et al. argue that a
monoculture (an absence of diversity) in computing
platforms is a serious security problem [23][24], but
do not discuss employing compiler diversity to counter
this particular attack. Forrest et al. argue that run-time
diversity in general is beneficial for computer security
[25]. In particular, their paper discusses techniques to
vary final binaries by “randomized” transformations
affecting compilation, loading, and/or execution.
Their goal was to automatically change the binary (as
seen at run-time) in some random ways sufficient to
make it more difficult to attack. The paper provides a
set of examples, including adding/deleting
nonfunctional code, reordering code, and varying
memory layout. They demonstrated the concept
through a compiler that randomized the amount of
memory allocated on a stack frame, and showed that
the approach foiled a simple buffer overflow attack.
This provides little defense against a subverted
compiler, which can insert an attack before the
countermeasures have a chance to thwart it.

Cowan et al. categorize “post hoc” techniques
(adaptations to software after implementation to
improve its security), based on what is adapted (the
interface or the implementation) and on how it is
adapted (either it is restricted or it is obscured). The
paper does not specifically address the problem of
malicious compilers [26].

Spinellis argues that “Thompson showed us that
one cannot trust an application’s security policy by
examining its source code... The recent Xbox attack
demonstrated that one cannot trust a platform’s
security policy if the applications running on it cannot
be trusted” [27].

It is worth noting that the literature for change
detection (such as [28]) and intrusion detection do not
easily address this problem. Here the compiler is
operating normally: it is expected to accept source
code and generate object code.

Faigon’s “Constrained Random Testing” detects
compiler defects by creating many random test
programs, compiling them with a compiler under test
and a reference compiler, and detecting if running
them produces different results [29]. This is extremely
unlikely to find the Trojan horses considered here.

3. Analysis of threat

Thompson describes how to perform the attack,
but there are some important characteristics of the
attack that are not immediately obvious from his
presentation. This section examines the threat in more
detail and introduces terminology to describe it.

We’ll begin by defining the threat. The threat
considered in this paper is that an attacker may have
modified one or more binaries (which computers run,
but humans do not normally view) so that the
compilation process inserts different code than would
be expected from examining the compiler source code,
sufficient so that recompilation of the compiler will
cause the re-insertion of the malicious code. As a
result, humans can examine the original source code
without finding the attack, and they can recompile the
compiler without removing the attack. For our
purposes we’ll call a subverted compiler a malicious
compiler, and the entire attack the “trusting trust”
attack.

Next, we’ll examine what might motivate an
attacker to actually perform such an attack, and the
mechanisms an attacker uses that make this attack
work (triggers, payloads, and non-discovery).

3.1. Attacker motivation

Understanding any potential threat involves
determining the benefits to an attacker of an attack,
and comparing them to the attacker’s risks, costs, and
difficulties. Although this “trusting trust” attack may
seem exotic, its large benefits may outweigh its costs
to some attackers.

The potential benefits are immense to a malicious
attacker. A successful attacker can completely control
all systems that are compiled by that binary and that
binary’s descendants, e.g., they can have backdoor
passwords inserted for logins and gain unlimited
privileges on entire classes of systems. Since detailed
source code reviews will not find the attack, even
defenders who have highly valuable resources and
check all source code are vulnerable to this attack.

For a widely-used compiler, or one used to
compile a widely-used program or operating system,
this attack could result in global control. Control over
banking systems, financial markets, militaries, or
governments could be gained with a single attack. An
attacker could possibly acquire limitless funds (by
manipulating the entire financial system), acquire or
change extremely sensitive information, or disable a
nation’s critical infrastructure on command.

An attacker can perform the attack against
multiple compilers as well. Once control is gained
over all systems that use one compiler, trust

relationships and network interconnections could be
exploited to ease attack against other compiler
binaries. This would be especially true of a patient
and careful attacker; once a compiler is subverted, it is
likely to stay subverted for a long time, giving an
attacker time to use it to launch further attacks.

An attacker (either an individual or an
organization) who subverted a few of the most widely
used compilers of the most widely-used operating
systems could effectively control, directly or
indirectly, almost every computer in existence.

The attack requires knowledge about compilers,
effort to create the attack, and access (gained
somehow) to the compiler binary, but all are
achievable. Compiler construction techniques are
standard Computer Science course material. The
attack requires the insertion of relatively small
amounts of code, so the attack can be developed by a
single knowledgeable person in their spare time.
Access rights to change the relevant compiler binaries
might be harder to acquire, but there are clearly some
who have such privileges already, and a determined
attacker could acquire such privileges through a
variety of means (including network attack, social
engineering, physical attack, bribery, and betrayal).

The amount of power this attack offers is great, so
it is easy to imagine a single person deciding to
perform this attack for their own ends. An individual
entrusted with compiler development might even
succumb to the temptation if they believed they could
not be caught, and the legion of virus writers shows
that people are willing to write malicious code even
without gaining the control this attack can provide.

Given such extraordinarily large benefits to an
attacker, a highly resourced organization (such as a
government) might decide to undertake it. Such an
organization could supply hundreds of experts,
working together full-time to deploy attacks over a
period of decades. Defending against this scale of
attack is beyond the ability of even many military
organizations, and is far beyond the defensive abilities
of the companies and non-profit organizations who
develop and maintain popular compilers.

In short, this is an attack that can yield complete
control over a vast number of systems, even those
systems whose defenders perform independent source
code analysis (e.g., those who have especially high-
value assets), so this is worth defending against.

3.2. Triggers, payloads, and non-discovery

This attack depends on three things: triggers,
payloads, and non-discovery. For purposes of this
paper, a “trigger” is a condition determined by an
attacker in which a malicious event is to occur (e.g.,
malicious code is inserted into a program). A

“payload” is the code that actually performs the
malicious event (e.g., the inserted malicious code and
the code that causes its insertion). By “non-discovery,”
this paper means that victims cannot determine if a
binary has been tampered with in this way; the lack of
transparency in binary files makes this attack possible.

For this attack to be valuable, there must be at
least two triggers: one to cause a malicious attack
directly of value to the attacker (e.g., detecting
compilation of a “login” program so that a Trojan
horse can be inserted into it), and another to propagate
attacks into future versions of the compiler.

If a trigger is activated when the attacker does not
intend the trigger to be activated, the probability of
detection increases. However, if a trigger is not
activated when the attacker intends it to be activated,
then that particular attack will be disabled. If all the
attacks by the compiler against itself are disabled, then
the attack will no longer propagate; once the compiler
is recompiled, the attacks will disappear. Similarly, if a
payload requires a situation that (through the process
of change) disappears, then the payload will no longer
be effective (and its failure may reveal the attack).

In this paper, “fragility” is the susceptibility of this
attack to failure, i.e., that a trigger will activate when
the attacker did not wish it to (risking a revelation of
the attack), fail to trigger when the attacker would
wish it to, or that the payload may fail to work as
intended. Fragility is unfortunately less helpful to the
defender than it might first appear. An attacker can
counter fragility by simply incorporating many
narrowly-defined triggers and payloads. Even if a
change causes one trigger to fail, another trigger may
still fire. By using multiple triggers and payloads, an
attacker can attack multiple points in the compiler and
attack different subsystems as final targets (e.g., the
login system, the networking interface, and so on).
Thus, there may be enough vulnerabilities in the
resulting system to allow attackers to re-enter and re-
insert new triggers and payloads into a malicious
compiler. Even if a compiler misbehaves from
malfunctioning malware, the results will often appear
to be a mysterious compiler defect; if programmers
“code around” the problem, the attack will stay
undetected.

Since attackers do not want their malicious code
to be discovered, they may limit the number of
triggers/payloads they insert and the number of
attacked compilers. In particular, attackers may tend to
attack only “important” compilers (e.g., compilers that
are widely-used or used for high-asset projects), since
each compiler they attack (initially or to add new
triggers and payloads) increases the risk of discovery.
However, since these attacks can allow an attacker to
deeply penetrate systems generated with the compiler,
malicious compilers make it easier for an attacker to
re-enter a previously penetrated development

environment to refresh a binary with new triggers and
payloads. Thus, once a compiler has been subverted, it
may be difficult to undo the damage without a process
for ensuring that there are no attacks left.

The text above might give the impression that
only the compiler binary itself can influence results (or
how they are run), yet this is obviously not true.
Assemblers and loaders are excellent places to place a
trigger (the popular gcc compiler actually generates
assembly language as text and then invokes an
assembler). An attacker could place the trigger
mechanism in the compiler’s supporting infrastructure
such as the operating system kernel, libraries, or
privileged programs. In many cases writing triggers is
more difficult for such components, but in some cases
(such as I/O libraries) this is fairly easy to do.

4. Diverse double-compiling (DDC)

The idea of diverse double-compiling (DDC) was
first created and posted by Henry Spencer in 1998
[30], inspired by McKeeman et al’s exercise for
detecting compiler defects [31][32]. Since this time,
this idea has been posted in several places, all with
very short descriptions [16][33][34].

To perform DDC, recompile a compiler’s source
code twice: once with a second “trusted” compiler, and
again using the result of the first compilation. Then,
check if the final result exactly matches the original
compiler binary; if it does, then there is no Trojan
horse in the binary (given some assumptions to be
discussed later). This technique uses the second
(trusted) compiler as a check on the first. Thompson’s
attack assumes that there is only one compiler
available; adding a second compiler invalidates this
assumption. The trusted compiler and its environment
may be malicious, as long as that does not impact their
result in this case, and they may be very slow.

Figure 1 illustrates the process of DDC in more
detail, along with a self-regeneration check. This
figure shows binary file(s) for an untrusted compiler
A, binary file(s) for a trusted compiler T, and source
code sA that is claimed to be the source code of
compiler A. The result of compiling source SC using
compiler X is notated as c(SC,X). The shaded boxes
show a compilation step; in this notation, a
compilation uses a compiler (input from the top),
source code (input from the left), and other data (input
from the right), all to produce a binary (output exiting
down). File comparisons are shown as labeled dashed
lines.

Before performing DDC, we should first do a
regeneration check. This check acts like the control of
an experiment; it detects when a compiler cannot
regenerate itself. Simply take source code sA and
compile it with compiler A, producing binary file

c(sA,A), that is, source sA compiled by compiler A. We
then do a bit-for-bit comparison (Compare1) to see if
c(sA,A) is the same as A. If c(sA,A) is the same as A,
then the compiler can regenerate (reproduce) itself.
This does not prove the absence of malice, however.

We then perform DDC. We start by using trusted
compiler T to compile sA to produce c(sA,T), that is,
source sA compiled by T. We then use c(sA,T) to
compile sA again, producing the binary c(sA,c(sA,T)).
The final result is then compared (in a trusted
environment) to the original A and c(sA,T); if
c(sA,c(sA,T)), A, and c(sA,T) are identical, then we can
say that sA accurately reflects A (we’ll see why this is
so in the next section). These two compilation steps
will be called stage 1 and stage 2, and are the origin of
its name: we compile twice, the first time using a
different (diverse) compiler. All three compilations
(self-regeneration check, stage 1, and stage 2) could be
performed on the same or on different environments.

5. Justification

To justify this technique, we must first state some
assumptions:
1. We must have a trusted compilation process T,
comparer, and environment(s) used in DDC, and
trusted way to acquire A and sA. “Trusted” here means
we have reason to believe it does not have triggers and
payloads that affect those actions identically as
possible triggers and payloads in the compiler under
test. They may have triggers and payloads, but they do
not matter if they do not affect the result, and defects
are likely to be detected. Justifying this assumption is
discussed in section 6.
2. T must have the same semantics for the same
constructs as A does, for the set of constructs used in
source code sA. Obviously, a JavaTM compiler cannot
be used directly as T if sA is written in the C language!
But if sA uses any nonstandard language extensions, or
depends on a construct not defined by a language

Fig. 1. Diverse double-compiling with
self-regeneration check

Other
input

Key

Compilation
result c(SC,X)

Compiler X

Source
code SC

T

1

c(s
A
,T)

c(s
A
,c(s

A
,T))

2

Compare2
 (s represents A?)

Diverse
double-
compile

s
A

A Compare1 (Can A regenerate?)

0 Self-regenerate?

c(s
A
,A)

specification, then T must implement them in the way
expected by sA. If a different environment is used,
additional challenges may arise (e.g., byte ordering
problems) unless sA was designed to be portable. Any
defect in T can also cause problems, though defects
will be detected by the process unless they do not
affect sA or A has exactly the same defects with the
same semantic results. Only the semantics need to be
identical; T may be very slow, run on a different
processor or virtual machine, and produce code for a
different processor or virtual machine.
3. The information (such as option flags) that affects
the output of compilation must be semantically
identical when generating c(sA,A) and c(sA,c(sA,T)). If
the stage 2 environment is different from the self-
regeneration stage’s, minor porting may be needed.
Any input such as command line parameters
(including option flags that change the results),
important environment variables, libraries used as
data, and so on that affect the outcome must be
controlled.
4. The compiler defined by sA should be deterministic
given only its inputs, and not use or write undefined
values. Given the same source code and other inputs, it
should produce exactly the same outputs. If the
compilation is non-deterministic, in some cases it
could be handled by running the process multiple
times, but in practice it is easier to control enough
inputs to make the compiler deterministic. Non-
determinism hides other problems, in any case, and
makes finding flaws much more difficult; uncontrolled
non-determinism in a compiler should be treated as a
defect. Although undefined values may be
deterministic in a particular environment, if the
environment changes the undefined values may also
change, with the same result. It may be possible to
work around this by carefully setting undefined values
to a defined value, but it is better to fix the compiler to
not do this in the first place. If timestamps are
embedded in the output, the time should be controlled
so that they will be identical in both outputs or some
alternative approach (discussed later) must be used.

The “self-regeneration” step is important; until we
can reproduce the binary of the compiler A using
itself, we cannot hope to reproduce it with a more
complicated process. This step is likely, for example,
to detect non-determinism in A. If A does not
regenerate itself, then we must first determine how to
repeatably generate A.

We can now make the following assertions, if the
preceding assumptions are true:
1. Stage 1’s result, c(sA,T), will be functionally the
same as A if sA represents A. Stage 1 simply compiles
sA using T to produce program c(sA,T). c(sA,T) will
normally have a different representation than A, since
it was compiled using the different compiler T. Indeed,
T may generate code for a completely different

processor. But if source sA truly represents the source
of compiler A, and the other assumptions are true, then
c(sA,T) will be functionally the same as A. E.g., if sA is
an x86 compiler, compiler A an x86 binary, and T
generates 68K code, then c(sA,T) would run on a 68K
—but since sA is for an x86 compiler, running c(sA,T)
would generate x86 code.
2. Even if A is malicious, it cannot affect the result
c(sA,c(sA,T)). During DDC, program A (which is
potentially malicious) is never used at all. Instead,
during DDC we only use a trusted compilation process
T, code generated by T, and other programs in
environments which we trust do not trigger on
compilation of sA. Thus, even if A is malicious, it
cannot affect the outcome.
3. Stage 2’s result, c(sA,c(sA,T)), will be identical to
c(sA,A) and A iff sA accurately represents A. Since
c(sA,T) is supposed to be functionally the same as A,
we can execute c(sA,T) to compile the original source
code sA, producing yet another new binary
c(sA,c(sA,T)). But since this new binary was compiled
with a program that is supposed to be functionally
identical to A, and all other compilation inputs that
affected compilation results were kept the same, then
its output should be the same as A... and since the
input is sA, the output should be the same as A and
c(sA,A). Continuing the assertion 1 example, c(sA,T)
will generate x86 code the same way A is supposed to,
so if it is given sA, it should produce A. If c(sA,c(sA,T))
is different from A, then at least one assumption listed
above is false or A has been changed in a way not
visible in sA (e.g., by having malicious content).

Note key limitations of this technique:
1. It only shows that the source and binary files
correspond, i.e., that there is “nothing hidden.” The
source code may have Trojan horses and errors, in
which case the binary file will too. However, if the
source and binary correspond, the source code can be
analyzed in the usual ways to find such problems.
2. It only shows that a particular binary and source
code match. There may be other binaries that contain
Trojan horse(s) not represented by the source, but they
will be different in some way.

6. Methods to increase diversity

DDC requires a trusted compiler T and trusted
environment(s) where there is a high degree of
confidence that any triggers against sA that may be in
compiler A will not also be present. Trust can be
gained in a variety of ways; one way is to perform a
complete formal proof of compiler T’s implementation
and of the environments used in DDC, along with
evidence that what actually runs is what was proved.

A simpler method to gain a great amount of trust
is through diversity, and there are many ways we can

gain diversity to increase the claim’s strength. These
include diversity in compiler implementation, in time,
in environment, and in input source code.

6.1. Diversity in compiler implementation

Ideally, compiler T’s binary should be for a
completely different implementation than of compiler
A. Compiler T’s binary could include triggers and
payloads for other compilers (such as compiler A), but
this is much less likely, since an attacker would then
have to subvert the development process of multiple
compiler binaries to do so.

Ideally, compiler T has never been compiled by
any version of compiler A, even in T’s initial
bootstrap. This is because compiler A could insert into
the binary code some routines to check for any
processing of compiler A (itself), so that it can later
“re-infect” itself. This kind of attack is difficult to do,
however, especially since bootstrapping is usually
done very early in a compiler’s development and an
attacker may not even be aware of the compiler T’s
development at that time. One of the most obvious
locations where this might be practical might be in the
I/O routines. However, I/O routines are more likely to
be viewed at the assembly level (e.g., to do
performance analysis), so an attacker risks discovery if
they subvert I/O routines.

6.2. Diversity in time

If compiler T and the DDC environment were
developed long before the compiler A, and they do not
share a common implementation heritage, it is
improbable that compiler T or its environment would
include relevant triggers for a not-yet-implemented
compiler (Magdsick makes a similar point [14]). It is
possible that an attacker could arrange to include
triggers in compiler A’s source code once compiler A
is developed, but this is extremely difficult to do, and
is even more difficult to maintain over time as
compilers change.

Using a newer compiler binary to check an older
compiler gains less confidence; it is easier for a
recently-released compiler binary to include triggers
and payloads for many older compilers, including
completely different compilers. Still, this requires the
subversion of multiple different compilers’ binaries, so
even this case can increase confidence.

Diversity achieved via earlier development can
only provide significant confidence if it can be clearly
verified that compiler T and/or the DDC environments
are truly the ones that existed at the earlier time. In
particular, old versions should not be simply acquired
over the Internet without independent verification,
because a resourceful attacker could tamper with those

copies. Instead, protected copies of the original media
should be preferred to reduce the risk of tampering.
Other copies can be used to verify that the data used is
correct. Cryptographic hashes can be used to verify
the media; multiple hash algorithms should be used, in
case a hash algorithm is broken.

An older binary version of compiler A can be used
as compiler T, if there is reason to believe that the old
version is not malicious or that any Trojan horse in the
old version of A will not be triggered by sA. Note that
this is a weaker test; the common ancestor could have
been subverted. This technique gives greater
confidence if the changes in the compiler have been so
significant that the newer version is in essence a
different compiler, but it would be best if compiler T
were truly a separate implementation.

6.3. Diversity in environment

Different environments could be used. Compiler
T could generate code for a different environment; T
and/or c(sA,T) could run on a different environment.
The term “environment” here means the entire
infrastructure supporting the compiler including the
CPU architecture, operating system, supporting
libraries, and so on. It should not be running any other
processes (which might try to use kernel vulnerabilities
to detect a compilation and subvert it). Using a
completely different environment counters Trojan
horses whose triggers and payloads are actually in the
binaries of the environment, as well as countering
triggers and payloads that only work on a specific
operating system or CPU architecture.

These benefits could be partly achieved through
emulation of a different system. There is always the
risk that the emulation system or underlying
environment could be subverted specifically to give
misleading results, but attackers will find this difficult
to achieve, particularly if the emulation system is
developed specifically for this test (an attacker might
have to develop the attack before the system was
built!).

6.4. Diversity in source code input

Another way to add diversity would be to use
mutations of compiler A’s source code as the input to
the first stage of DDC [10][11]. Compiler T is then a
source code transform, a compiler (possibly the
original compiler), and possibly a postprocessing step.

Semantic-preserving mutations change the source
code without changing its semantics. This could
include actions such as renaming items (such as
variables, functions, and/or filenames), reordering
statements where the order is irrelevant, regrouping
statements, intentionally performing unnecessary

operations that will not produce an output, changing to
different algorithms that produce sufficiently similar
results, and changing compiler opcode values for
internal data structures. Even trivial changes, such as
changing whitespace, increases diversity (these trivial
changes can still be enough to counter triggers if those
triggers depend on them). Forrest discusses several
methods for introducing diversity [25]. McDermott
notes that even changed semantics are helpful, e.g.,
performing excess tasks whose results are ignored
[11].

By inserting such mutations, it is less likely that
triggers designed to attack compiler A will activate in
the compiler used inside T, and if they do, the
payloads in compiler T are less likely to be effective.
These mutations could be implemented by automated
tools, or even manually. Since it is part of T, trust is
given to the mutator (be it manual or automated). If the
mutator has an unintentional defect, the result will be
simply that a difference will be identified; tracking
backwards to explain the difference will identify the
defect, so defects in the mutator are not as serious.

7. Practical challenges

There are many practical challenges to
implementing this technique, but they can generally be
overcome.

Uncontrolled nondeterminism or using
uninitialized data may cause a compiler to generate
different answers for the same source input. It may be
easiest to modify the compiler so that it can be made to
be deterministic (e.g., add an option to set a random
number seed) and to never use uninitialized data.
Differences that do not affect the outcome are fine,
e.g., heap memory allocations during compilation
often allocate different memory addresses, but this is
only a problem if the compiler output changes
depending on those addresses’ specific values.
Roskind reports that variance in heap address locations
affected the output of at least some versions of the
Javasoft javac compiler. He also stated that he felt that
this was a bug, noting that this behavior made port
validation extremely difficult [35].

It may be difficult to compile sA using existing
trusted compilers. Thankfully, there are many possible
solutions if sA cannot be compiled by a given trusted
compiler. An existing trusted compiler could be
modified (e.g., to add extensions) so it can compile sA.
Another alternative is to create a trusted preprocess
step that is applied to sA, possibly done by hand; as a
result T would be defined as being the preprocess step
plus the trusted compiler. Trusted compiler T could be
created by using an existing trusted compiler (but one
that cannot compile sA directly) to compile another
existing trusted compiler that can compile sA, i.e., the

first trusted compiler is used to bootstrap another
compiler. It is possible to write a new trusted compiler
from scratch; since performance is irrelevant and it
only needs to be able to compile one program, this
may not be difficult. An old version of A could be used
as T, but that is far less diverse so the results are far
less convincing, and risks “pop-up” attacks.

A “pop-up” attack, as defined in this paper, is
where an attacker includes a self-perpetuating attack in
only some versions of the source code (where the
attack “pops up”), with the idea that defenders may not
examine the source code of those particular versions in
detail. Imagine that T is used to determine that an old
version of compiler A (call it A1) corresponds to its
source sA1. Now imagine that an attacker cannot
modify binaries directly (e.g., because they are
regenerated by a suspicious user), but that the attacker
can modify the source code of the compiler (e.g., by
breaking into its repository). The attacker could sneak
malevolent self-perpetuating code into sA2 (which is
used to generate A2), and then remove that malevolent
code from sA3. If A2 is used to generate A3, then A3
may be malicious, even though examining sA3 will not
reveal an attack. Examination of every change in the
source code at each stage can prevent this, but this
must be thorough; examining only the source’s
beginning and end-state will miss the attack. It is safer
to re-run DDC on every release; if that is impractical,
at least do it periodically to reduce the attack window.

Compilers may have multiple subcomponents. It
may be necessary to break sA into subcomponents and
handle them separately, possibly in a certain order to
address dependencies. Section 8 demonstrates this.

Inexact comparisons may be needed. The
comparisons (Compare1 and 2) need not require an
identical result as long as it can be shown that the
differences that do not cause a change in behavior.
This might occur if, for example, outputs included
embedded compilation timestamps. However,
showing that differences in files do not cause
differences in the functionality, in the presence of an
adversary, is extremely difficult. An alternative that
can work in some cases is to run additional self-
generation stages until a stable result occurs. Another
approach is to first work to make the results identical,
and then show that the steps leading from that trusted
point do not introduce an attack.

The environment of A may be untrusted. As
noted earlier, an attacker could place the trigger
mechanism in the compiler’s supporting infrastructure
such as the operating system kernel, libraries, or
privileged programs. Triggers would be especially
easy to place in assemblers, linkers, and loaders. But
even unprivileged programs might be enough to
subvert compilations; an attacker could create a
program that exploited unknown kernel vulnerabilities.
The DDC technique can be used to cover these cases

as well. Simply redefine A as the set of all
components to be checked; this could even be the set
of all software that runs on that machine (including all
software run at boot time). This means that the source
code for all this software to be checked is sA. Consider
obtaining A and sA from some read-only medium (e.g.,
CD-ROM or inactive hard drive); do not trust A to
produce itself (e.g., by copying A’s files using A)!
Then, using DDC on a different (trusted) environment,
rebuild A using sA; in the limit this would regenerate
all of the operating system (including boot software),
application programs, and so on. Files that are directly
reviewed by humans (e.g., interpreted non-binaries)
can be “compiled” to themselves. If DDC can
regenerate the original A, then the entire set of
components included in A are represented by the entire
set of source code in sA. If A or its environment might
have code that shrouds sA, always use a trusted system
to view/print sA when examining sA.

A resourceful attacker might attack the system
performing DDC (e.g., over a network) to subvert its
results. DDC should be done on isolated system(s).
Ideally, the systems used to implement DDC should be
rebuilt from trustworthy media, not connected to
external networks at all, and not run any programs
other than those necessary for the test.

Few will want to do DDC themselves. This
technique might be difficult to do the first time for
some compilers, and in any case there is no need for
everyone to perform this check. Organization(s)
trusted by many others (such as government agencies
or trusted organizations sponsored by them) could
perform these techniques on a variety of
compilers/environments, as they are released, and
report the cryptographic hash values of the binaries
and their corresponding source code. The source code
would not need to be released to the world, so this
technique could be applied to proprietary software.
This would allow others to quickly check if the
binaries they received were, in fact, what their
software developers intended to send. If someone did
not trust those organizations, they could ask for
another organization they did trust to do this (including
themselves, if they can get the source code).
Organizations that do checks like this have elsewhere
been termed “trusted build agents” [16].

8. Demonstration using tcc

There is no public evidence that this technique has
been used. One 2004 gcc mailing list posting stated,
“I’m not aware of any ongoing effort,” [36]; another
responded, “I guess we all sorta hope someone else is
doing it.” [37]. This section describes its first
demonstration.

A public demonstration requires a compiler whose
source code is publicly available. Other ideal traits for
the initial test case included being relatively small and
self-contained, running quickly (so that test runs would
be rapid), having an open source software license (so
the experiment could be repeated and changes could be
publicly redistributed [38]), and being easily compiled
by another compiler. The compiler needed to be
relatively defect-free, since defects would interfere
with these tests. The Tiny C Compiler, abbreviated as
TinyCC or tcc, was chosen as it appeared to meet these
criteria.

The compiler tcc was developed by Fabrice
Bellard and is available from its website at
http://www.tinycc.org/. This project began as the
Obfuscated Tiny C Compiler (OTCC), a very small C
compiler Bellard wrote to win the International
Obfuscated C Code Contest (IOCCC) in 2002. He
then expanded this small compiler so that it now
supports all of ANSI C, most of the newer ISO C99
standard, and many GNU C extensions including inline
assembly. The compiler tcc appeared to meet the
requirements given above. In addition, tcc had been
used to create “tccboot,” a Linux distribution that first
booted the compiler and then recompiled the entire
kernel as part of its boot process. This capability to
compile almost all code at boot time could be very
useful for future related work, and suggested that the
compiler was relatively defect-free.

The following sections describe the test
configuration, the DDC process, problems with casting
8-bit values and long double constants, and final
results.

8.1. Test configuration

All tests ran on an x86 system running Red Hat
Fedora Core 3. This included Linux kernel version
2.6.11-1.14_FC3 and gcc version 3.4.3-22.fc3. gcc
was both the bootstrap compiler and the trusted
compiler for this test; tcc was the simulated potentially
malicious compiler.

First, a traditional chain of recompilations was
performed using tcc versions 0.9.20, 0.9.21, and
0.9.22. After bootstrapping, a compiler would be
updated and used to compile itself. Their gzip
compressed tar files have the following SHA-1 values
(provided so others can repeat this experiment):
6db41cbfc90415b94f2e53c1a1e5db0ef8105eb8 0.9.20
19ef0fb67bbe57867a590d07126694547b27ef41 0.9.21
84100525696af2252e7f0073fd6a9fcc6b2de266 0.9.22

As is usual, any such sequence must start with
some sort of bootstrap of the compiler. gcc was used to
bootstrap tcc-0.9.20, causing a minor challenge: gcc
3.4.3 would not compile tcc-0.9.20 directly because
gcc 3.4.3 added additional checks not present in older

versions of gcc. In tcc-0.9.20, some functions are
declared like this, using a gcc extension to C:
void *__bound_ptr_add(void *p, int offset)
__attribute__((regparm(2)));

but the definitions of those functions in tcc’s
source code omit the __attribute__((regparm(...))). gcc
3.4.3 perceives this as inconsistent and will not accept
it. Since this is only used by the initial bootstrap
compiler, we can claim that the bootstrap compiler has
two steps: a preprocessor that removes these regparm
statements, and the regular gcc compiler. The regparm
text is only an optimization with no semantic change,
so this does not affect our result.

This process created a tcc version 0.9.22 binary
file which we have good reasons to believe does not
have any hidden code in the binary, so it can be used
as a test case. Now imagine an end-user with only this
binary and the source code for tcc version 0.9.22. This
user has no way to ensure that the compiler has not
been tampered with (if it has been tampered with, then
its binary will be different, but this hypothetical end-
user has no “pristine” file to compare against). Would
DDC correctly produce the same result?

8.2. Diverse double-compiling tcc

Real compilers are often divided into multiple
pieces. Compiler tcc as used here has two parts: the
main compiler (file tcc) and the compiler run-time
library (file libtcc1.a; tcc sometimes copies portions of
this into its results). For purposes of this
demonstration, these were the only components being
checked; everything else was assumed to be
trustworthy for this simple test (this assumption could
be removed with more effort). The binary file tcc is
generated from the source file tcc.c and other files; this
set is notated stcc. Note: the tcc package also includes a
file called tcclib, which is not the same as libtcc1.

Figure 2 shows the process used to perform DDC
with compiler tcc. First, a self-regeneration test was
performed to make sure we could regenerate files tcc
and libtcc1; this was successful. Then DDC was
performed. Notice that stages one and two, which are
notionally one compilation each, are actually two
compilations each when applied to compiler tcc
because we must handle two components in each stage
(in particular, we must create the recompiled run-time
before running a program that uses it).

One challenge is that the run-time code is used as
an archive format (.a format), and this format includes
a compilation timestamp of each component. These
timestamps will, of course, be different from any
originals unless special efforts are made. Happily, the
runtime code is first compiled into an ELF .o format
(which does not include these timestamps), and then
transformed into an archive format using a trusted

program (ar). So, for testing purposes, the libtcc1.o
files were compared and not the libtcc1.a files.

Unfortunately, when this process was first tried,
the DDC result did not match the result from the chain
of updates, even when only using formats that did not
include compilation timestamps. After much effort this
was tracked to two problems: a compiler defect in
sign-extending values cast to 8-bit values, and
uninitialized data used while storing long double
constants. Each of these issues is discussed next,
followed by the results after resolving them.

8.3. Defect in sign-extending cast 8-bit values

A subtle defect in tcc caused serious problems.
The defect occurs if a 32-bit unsigned value is cast to a
signed 8-bit value, and then that result is compared to
a 32-bit unsigned value without first storing the result
in a variable (which should sign-extend the 8-bit
value). Here is a brief description of why this
construct is used, why it is a defect, and the impact of
this defect.

The x86 processor machine instructions can store
4 byte constants as 4 bytes, but since many such
constants are in the range -128..127, constants in this
range can also be stored in a shorter 1-byte format (by
specifying a specific ModR/M value in the machine
instruction). Where possible, tcc tries to use the

Fig. 2. Diverse double-compiling with
self-regeneration check, using tcc

0:0

0:1

c(s
libtcc1

.gcc)
Stage1

Stage2

c(s
tcc

, c(s
tcc

, gcc)) c(s
libtcc1

, c(s
tcc

, gcc))

2:1

2:0

1:0

1:1

gcc

C
om

pare2

s
libtcc1

Self-
regen?

libtcc1

c(s
libtcc1

,tcc)

s
tcc

c(s
tcc

,tcc)

Diverse Double-compile

tcc

C
om

pare1

c(s
tcc

,gcc)

shorter form, using statements like this to detect them
(where e.v is of type uint32, an unsigned 32-bit value):
if (op->e.v == (int8_t)op->e.v && !op->e.sym) {

Unfortunately, the value cast to (int8_t) is not
sign-extended by tcc version 0.9.22 when compared to
an unsigned 32-bit integer. Version 0.9.22 does drop
the upper 24 bits on the first cast to the 8-bit signed
integer, but it fails to sign-extend the remaining 8-bit
signed value unless the 8-bit value is first stored in a
variable. This is a defect, at least because tcc’s source
code depends on a drop with sign-extension and tcc is
supposed to be self-hosting. It is even more obvious
that this is a defect because using a temporary variable
to store the intermediate result does enable sign-
extension. Besides, this is documented as a known
defect in tcc 0.9.22’s own TODO documentation,
though this was only discovered after laboriously
tracking down the problem. According to Kernighan
[39] section A6.2 and the ISO/IEC C99 standard
section 6.3.1.3 [40], converting to a smaller signed
type is implementation-defined, but conversion of that
to a larger unsigned value should sign-extend. Note
that gcc does do the drop and sign-extension (as tcc’s
author expects).

This defect results in incorrect code being
generated by tcc 0.9.22 if it is given values in the range
0x80..0xff in this construct. But when compiling
itself, tcc is lucky and merely generates slightly longer
code than necessary in certain cases. Thus, a gcc-
compiled tcc generates code of this form (where 3-byte
codes are used) when compiling some inline assembly
in the tcc runtime library libtcc1:
1b5: 2b 4d dc sub 0xffffffdc(%ebp),%ecx
1b8: 1b 45 d8 sbb 0xffffffd8(%ebp),%eax

But a tcc-compiled tcc incorrectly chooses the
“long” form of the same instructions (which have the
same effect—note the identical disassembly):
1b5: 2b 8d dc ff ff ff sub 0xffffffdc(%ebp),%ecx
1bb: 1b 85 d8 ff ff ff sbb 0xffffffd8(%ebp),%eax

One of the key assumptions in DDC is that the
two compilers agree on the semantics of the language
being compiled. This tcc defect violates this
assumption, causing the files to unexpectedly differ.
To resolve this, tcc was modified slightly so it would
store such intermediate values in a temporary variable,
avoiding the defect; a better long-term solution would
be to fix the defect.

This example shows that DDC can be a good test
for unintentional compiler defects—small defects that
might not be noticed elsewhere may immediately
surface!

8.4. Long double constant problem

Another problem resulted from how tcc outputs
long double constants. The tcc outputs floating point
constants in the “data” section, but when tcc compiles
itself, the tcc.c line:

if (f2 == 0.0) {

outputs inconsistent data section values to
represent 0.0. The tcc compiled by gcc stores 11 0x00
bytes followed by 0xc9, while tcc compiled by itself
generates 12 0x00 bytes. Because f2 has type “long
double,” tcc eventually stores this 0.0 in memory as a
long double value. The problem is that tcc’s “long
double” uses only 10 bytes, but it is stored in 12 bytes,
and tcc’s source code does not initialize the extra 2
bytes. The two excess “junk” bytes end up depending
on the underlying environment, causing variations in
the output [41]. In normal operation these bytes are
ignored and thus cause no problems.

To resolve this, the value “0.0” was replaced with
the expression (f1-f1), since f1 is a long double
variable known to have a finite value there (e.g., it is
not a NaN). This is semantically the same and
eliminated the problem. A better long-term solution
for tcc would be to always set these “excess” values to
constants (such as 0x00).

8.5. Final results with tcc demonstration

After patching tcc 0.9.22 as described above, and
running it through the processes described above,
exactly the same files were produced through the chain
of updates and through DDC. This is shown by these
SHA-1 hash values for the compiler and its runtime
library, which were identical for both processes:
c1ec831ae153bf33bff3df3c248b12938960a5b6 tcc
794841efe4aad6e25f6dee89d4b2d0224c22389b libtcc1.o

But can we say anything about unpatched tcc
0.9.22? We can, once we realize that we can (for test
purposes) pretend that the patched version came first,
and that we then applied changes to create the
unpatched version. Since we have shown that the
patched version’s source accurately represents the
binary identified above, we only need to examine the
effects of a reversed change that “creates” the
unpatched version. Visual inspection of the reversed
change quickly shows that it has no malicious triggers
and payloads. Thus, we can add one more chain from
the trusted compiler to a “new” version of the compiler
that is the untouched tcc-0.9.22. Because of the
changes in semantics and the flow of data, to get a
stable result we end up needing to recompile several
times. In the end, the following SHA-1 hash values
are the correct binaries for tcc-0.9.22 on an x86 in this
environment when tcc is self-compiled a sufficient
number of times to become “stable”:
d530cee305fdc7aed8edf7903d80a33b6b3ee1db tcc
42c1a134e11655a3c1ca9846abc70b9c82013590 libtcc1.o

9. Ramifications

This paper has summarized and demonstrated how
to detect Thompson’s “Trusting Trust” attack, using
diverse double-compiling (DDC). This technique has

many strengths: it can be completely automated,
applied to any compiled language (including common
languages like C), and does not require the use of
complex mathematical proof techniques. Second-
source compilers and environments are desirable for
other reasons, so they are often already available, and
if not they are also relatively easy to create (since high
performance is unnecessary). Some unintentional
defects in either compiler are also detected by the
technique. The technique can be easily expanded to
cover all of the software running on a system
(including the operating system kernel, bootstrap
software, libraries, microcode, and so on) as long as its
source code is available.

Passing this test when the trusted compiler and
environment is not proven is not a mathematical proof,
but more like a legal one. The test can be made as
strong as you wish, by decreasing the likelihood (e.g.,
through diversity) that the DDC process (including
trusted compiler T and the environments) also have the
malicious code. Multiple diverse DDC tests can
strengthen the evidence even further. A defender can
easily make it extremely unlikely that an attacker
could subvert the DDC technique.

Note that this technique only shows that the
source code corresponds with a given compiler’s
binary, i.e., that nothing is hidden. The binary may
have errors or malevolent code; this technique simply
ensures that these errors and malevolent code can be
found by examining the source code. Passing this test
makes source code analysis more meaningful.

As with any approach, this technique has
limitations. The source code for the compiler being
tested must be available to the tester, and the results
are more useful to those who have access to the source
code of what was tested (the compiler and/or the
environment under test). Since the technique requires
two compilers to agree on semantics, this is easier to
do for popular languages where there is a public
language specification and where no patents inhibit the
creation of a second implementation. The technique is
far simpler if the compiler being tested was designed
to be portable and avoids using nonstandard
extensions. It can be applied to microcode and
hardware specification data as well, but applying it
directly to hardware (like CPUs) requires an “equality”
operation for hardware, which is more challenging.

This technique does have potential policy
implications. To protect themselves and their
citizenry, governments could enact policies requiring
that they receive all of the source code (including build
instructions) necessary to rebuild a compiler and its
entire environment, and for it to be sufficiently
portable so it can be built with an alternative trusted
compiler and environment. Multiple compilers are
easier to acquire for standardized languages, so
governments could insist on the use of standard

languages, specified in legally unencumbered public
standards and implemented by multiple vendors, to
implement compilers and critical infrastructure.
Organizations (such as governments) could establish
groups to do this testing and report the cryptographic
hashes of corresponding binaries and source.

Future potential work includes examining a larger
and more popular compiler (such as gcc), including an
entire operating system as the “compiler A” under test,
relaxing the requirement for exact equivalence, and
demonstrating DDC with a more diverse environment
(e.g., by using a much older operating system and
different CPU architecture).

10. References

[1] Karger, Paul A., and Roger R. Schell, Multics Security
Evaluation: Vulnerability Analysis, ESD-TR-74-193, Vol. II,
HQ Electronics Systems Division, Hanscom AFB, MA, June
1974, pp. 51-52.

[2] Thompson, Ken, “Reflections on Trusting Trust,”
Communications of the ACM, Vol. 27, No. 8, Apr. 1984, pp.
761-763, http://www.acm.org/classics/sep95.

[3] Thornburg, Jonathan, “?Backdoor in Microsoft web
server?,” Newsgroup sci.crypt, Apr. 18, 2000, http://groups-
beta.google.com/group/sci.crypt/msg/9305502fd7d4ee6f.

[4] Maynor, David, “Trust No-One, Not Even Yourself OR
The Weak Link Might Be Your Build Tools,” Black Hat USA
2004, Caesars Palace, Las Vegas, July 24-29, 2004,
http://blackhat.com/presentations/bh-usa-04/bh-us-04-
maynor.pdf.

[5] Maynor, David, “The Compiler as Attack Vector,” Linux
Journal, Seattle, WA, January 1, 2005,
http://www.linuxjournal.com/article/7839.

[6] Karger, Paul A., and Roger R. Schell, “Thirty Years Later:
Lessons from the Multics Security Evaluation,” ACSAC, Sep.
18, 2002, http://www.acsac.org/2002/papers/classic-
multics.pdf.

[7] gauis, “Things to do in Ciscoland when you’re dead,”
Phrack, Volume 0xa, Issue 0x38, May 1, 2000,
http://www.phrack.org/phrack/56/p56-0x0a.

[8] Anderson, Emory A., Cynthia E. Irvin, and Roger R.
Schell, “Subversion as a Threat in Information Warfare,”
Journal of Information Warfare, Vol. 3, No.2, pp. 52-65, June
2004, http://cisr.nps.navy.mil/downloads/
04paper_subversion.pdf.

[9] Sabin, Todd, “Comparing binaries with Graph
Isomorphism.” Bindview, 2004,
http://www.bindview.com/Support/RAZOR/Papers/2004/.

[10] Draper, Steve, “Trojan Horses and Trusty Hackers,”
Communications of the ACM, Vol. 27, No. 11, Nov. 1984, p.
1085.

[11] McDermott, John, “A Technique for Removing an
Important Class of Trojan Horses from High Order
Languages,” Proc. of the 11th National Computer Security
Conference, Baltimore, MD, Oct. 1988, pp. 114-117.

[12] Lee, Lawrence, “Re: Reflections on Trusting Trust,”
Linux Security Auditing mailing list, June 15, 2000,
http://seclists.org/lists/security-audit/2000/Apr-Jun/0222.html.

[13] Luzar, Lukasz, “Re: Linuxfromscratch.org,” SELinux
mailing list, July 23, 2003, http://www.nsa.gov/selinux/list-
archive/0307/4719.cfm.

[14] Magdsick, Karl Alexander, “Re: Linuxfromscratch.org,”
SELinux mailing list, July 23, 2003,
http://www.nsa.gov/selinux/list-archive/0307/4720.cfm.

[15] Anderson, Dean, “Re: Linuxfromscratch.org,” SELinux
mailing list, July 23, 2003, http://www.nsa.gov/selinux/list-
archive/0307/4724.cfm.

[16] Mohring, David, “Twelve Step TrustABLE IT: VLSBs in
VDNZs From TBAs,” IT Heresies, Oct. 12, 2004,
http://itheresies.blogspot.com/2004_10_01_itheresies_archive.
html.

[17] Stringer-Calvert, David William John, Mechanical
Verification of Compiler Correctness (PhD thesis), University
of York, Department of Computer Science. Mar. 1998,
http://www.csl.sri.com/users/dave_sc/papers/thesis.ps.gz.

[18] Goos, Gerhard, and Wolf Zimmermann, “Verification of
compilers,” Correct System Design, Springer-Verlag, 1999,
pp. 201-230.

[19] Dold, Axel, F.W. von Henke, V. Vialard, and W.
Goerigk, “A Mechanically Verified Compiling Specification
for a Realistic Compiler,” Lecture Notes in Computer Science,
Vol. 2245, Dec. 2001, pp 144-211.

[20] Bellovin, Steven Michael, Verifiably Correct Code
Generation Using Predicate Transformers, Dept. of Computer
Science, University of North Carolina at Chapel Hill, Dec.
1982.

[21] Goerigk, Wolfgang. “On Trojan Horses in Compiler
Implementations”, Proc. des Workshops Sicherheit und
Zuverlassigkeit softwarebasierter Systeme, 1999.

[22] Goerigk, Wolfgang, “Compiler Verification Revisited,”
Computer Aided Reasoning: ACL2 Case Studies, Kluwer
Academic Publications, 2000.

[23] Geer, Dan, Rebecca Bace, Peter Gutmann, Perry
Metzger, Charles P. Pfleeger, John S. Quarterman, and Bruce
Schneier, Cyber Insecurity: The Cost of Monopoly, Computer
and Communications Industry Association (CCIA), Sep. 24,
2003, http://www.ccianet.org/papers/cyberinsecurity.pdf.

[24] Bridis, Ted, “Exec fired over report critical of Microsoft:
Mass. firm has ties to company; software giant’s reach
questioned,” Seattle pi (The Associated Press), Sep. 26, 2003,
http://seattlepi.nwsource.com/business/141444_msftsecurity26
.html.

[25] Forrest, Stephanie, Anil Somayaji, and David H. Ackley,
“Building Diverse Computer Systems,” Proc. of the 6th
Workshop on Hot Topics in Operating Systems. IEEE
Computer Society Press, Los Alamitos, CA, 1997, pp. 67-72.

[26] Cowan, Crispin, Heather Hinton, Calton Pu, and Jonathan
Walpole, “The Cracker Patch Choice: An Analysis of Post
Hoc Security Techniques,” Proc. of the 23rd National
Information Systems Security Conference, Baltimore, MD.

June 27, 2000, http://www.scs.carleton.ca/
~soma/biosec/readings/cowan-post-hoc.pdf.

[27] Spinellis, Diomidis, “Reflections on Trusting Trust
Revisited,” Communications of the ACM, Vol., No. 6, June
2003, http://www.dmst.aueb.gr/dds/pubs/jrnl/2003-CACM-
Reflections2/html/reflections2.pdf.

[28] Forrest, Stephanie, Lawrence Allen, Alan S. Perelson,
and Rajesh Cherukuri, “Self-Nonself Discrimination in a
Computer,” Proc. of the 1994 IEEE Symposium on Research
in Security and Privacy, 1994.

[29] Faigon, Ariel, Testing for Zero Bugs,
http://www.yendor.com/testing.

[30] Spencer, Henry, “Re: LWN - The Trojan Horse (Bruce
Perens),” Robust Open Source mailing list (open-source at
csl.sri.com) established by Peter G. Neumann, Nov 23, 1998.

[31] William M. McKeeman, James J. Horning, and David B.
Wortman, A Compiler Generator, Prentice-Hall, Englewood
Cliffs, NJ, 1970.

[32] Spencer, Henry, private communication, August 23,
2005.

[33] Libra, “Cross compiling compiler (Green Hills Software
on free software in the military),” Linux Weekly News, Apr. 9,
2004, http://lwn.net/Articles/79801/.

[34] Buck, Joe, “Re: Of Bounties and Mercenaries,” gcc
mailing list, Apr. 7, 2004,
http://gcc.gnu.org/ml/gcc/2004-04/msg00355.html.

[35] Roskind, Jim. “Re: LWN - The Trojan Horse (Bruce
Perens)”, Robust Open Source mailing list (open-source at
csl.sri.com) established by Peter G. Neumann, Nov. 23, 1998.

[36] Lord, Tom, “Re: Of Bounties and Mercenaries,” gcc
mailing list, Apr. 7, 2004,
http://gcc.gnu.org/ml/gcc/2004-04/msg00394.html.

[37] Jendrissek, Bernd, “Tin foil hat GCC (Was: Re: Of
Bounties and Mercenaries),” gcc mailing list, Apr. 8, 2004,
http://gcc.gnu.org/ml/gcc/2004-04/msg00404.html.

[38] Wheeler, David A., Why OSS/FS? Look at the Numbers!,
May 9, 2005, http://www.dwheeler.com/oss_fs_why.html.

[39] Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, 2nd Edition, Prentice Hall PTR,
Mar. 22, 1988.

[40] ISO/IEC, The C Standard: Incorporating Technical
Corrigendum 1, ISO/IEC 9899:1999. John Wiley & Sons,
1999, ISBN 0-470-84573-2.

[41] Dodge, Dave, “Re: [Tinycc-devel] Mysterious tcc
behavior: why does 0.0 takes 12 bytes when NOT long
double,” tcc mailing list, May 27, 2005.
http://lists.gnu.org/archive/html/tinycc-
devel/2005-05/msg00027.html.

All URLs retrieved as of Sep. 18, 2005.
Manuscript submitted May 27, 2005, and revised Sep.
22, 2005. This work was supported by IDA under its
Central Research Program and written using
OpenOffice.org. It is dedicated to the memory of
Dennis W. Fife.

	1. Introduction
	2. Background
	2.1. Inadequate solutions
	2.2. Related work

	3. Analysis of threat
	3.1. Attacker motivation
	3.2. Triggers, payloads, and non-discovery

	4. Diverse double-compiling (DDC)
	5. Justification
	6. Methods to increase diversity
	6.1. Diversity in compiler implementation
	6.2. Diversity in time
	6.3. Diversity in environment
	6.4. Diversity in source code input

	7. Practical challenges
	8. Demonstration using tcc
	8.1. Test configuration
	8.2. Diverse double-compiling tcc
	8.3. Defect in sign-extending cast 8-bit values
	8.4. Long double constant problem
	8.5. Final results with tcc demonstration

	9. Ramifications
	10. References

