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Abstract

An  Air  Force  evaluation  of  Multics,  and  Ken  
Thompson’s  famous  Turing  award  lecture  
“Reflections  on  Trusting  Trust,”  showed  that  
compilers can be subverted to insert malicious Trojan  
horses into critical software, including themselves.  If  
this attack goes undetected, even complete analysis of  
a system’s source code will not find the malicious code  
that  is  running,  and  methods  for  detecting  this  
particular  attack  are  not  widely  known.   This  paper  
describes  a  practical  technique,  termed  diverse  
double-compiling (DDC), that detects this attack and  
some compiler defects as well.  Simply recompile the  
source  code  twice:  once  with  a  second  (trusted)  
compiler,  and  again  using  the  result  of  the  first  
compilation.  If  the  result  is  bit-for-bit  identical  with  
the untrusted  binary, then the source code accurately  
represents  the  binary.  This  technique  has  been 
mentioned informally, but its issues and ramifications  
have  not  been  identified  or  discussed  in  a  peer-
reviewed work,  nor has a public  demonstration been  
made. This paper describes the technique, justifies it,  
describes how to overcome practical challenges,  and  
demonstrates it.

1. Introduction

Many  product  security  evaluations  examine 
source code, under the assumption that the source code 
accurately  represents  the  product  being  examined. 
Naïve developers  presume  that  this  can  be  assured 
simply  by  recompiling  the  source  code  to  see  if  the 
same binary results.

Unfortunately,  if  an  attacker  can  modify  the 
binary file  of  the  compiler,  this  is  insufficient.  An 
attacker who can control the compiler  binary (directly 
or  indirectly)  can  render  source  code  evaluations 
worthless,  because  the  compiler  can  re-insert 
malicious  code  into  anything  it  compiles—including 
itself.

Karger  and  Schell  provided  the  first  public 
description  of  the  problem.   They  noted  in  their 
examination  of  Multics  vulnerabilities  that  a 
“penetrator  could  insert  a  trap  door  into  the... 

compiler...  [and]  since  the  PL/I  compiler  is  itself 
written in PL/I, the trap door can maintain itself, even 
when the compiler is recompiled.  Compiler trap doors 
are  significantly  more  complex  than  the  other  trap 
doors...  However,  they  are  quite  practical  to 
implement” [1].

Ken Thompson widely publicized this problem in 
his  famous  1984  Turing  Award  presentation 
“Reflections  on Trusting Trust,”  clearly  explaining it 
and demonstrating that  this  was both a practical  and 
dangerous  attack.   He first  described  how to modify 
the Unix C compiler  to inject  a Trojan horse,  in this 
case to modify the operating system login program to 
surreptitiously give him root access.  He then showed 
how to modify and recompile the compiler itself with 
an  additional  Trojan  horse  devised  to  detect  itself. 
Once this is done, the attacks can be removed from the 
source  code  so  that  no  source  code—even  of  the 
compiler—will  reveal  the  existence  of  the  Trojan 
horse,  yet  the  attacks  could  persist  through 
recompilations and cross-compilations of the compiler. 
He  then  stated  that  “No  amount  of  source-level 
verification  or  scrutiny  will  protect  you  from  using 
untrusted code... I could have picked on any program-
handling program such  as an assembler,  a loader,  or 
even  hardware  microcode.   As the  level  of  program 
gets lower, these defects will be harder and harder to 
detect”  [2].   As  a  demonstration,  Thompson 
implemented  this  attack  in  the  C  compiler  and 
successfully  subverted  another  Bell  Labs  group;  the 
attack was never detected. Thompson’s demonstration 
subverted  the  login  program  (for  control)  and  the 
disassembler  (to  hide  the  attack  from  disassembly). 
The  malicious  compiler  was  never  released  outside 
Bell Labs [3].

For  source  code  security  evaluations  to  be 
strongly  credible,  there  needs to  be  a  way  to  justify 
that  the  source  code  being  examined  accurately 
represents  the  files  being  executed—yet  this  attack 
subverts  that  very claim.   Internet  Security  System’s 
David  Maynor  argues that  the risk of  these  kinds of 
attacks  is  increasing  [4][5];  Karger  and Schell  noted 
this  was  still  a  problem  in  2000  [6],  and  some 
technologists  doubt  that  systems  can  ever  be  secure 
because of the existence of this attack [7].  Anderson et 



al.  argue  that  the  general  risk  of  subversion  is 
increasing [8].

Recently,  in  several  mailing  lists  and  blogs,  a 
special  technique  to  detect  such  attacks  has  been 
briefly  described,  which  uses  a  second  (diverse) 
“trusted” compiler  and two compilation stages.   This 
paper  terms  the  technique  “diverse  double-
compiling” (DDC).  In DDC, if the final result is bit-
for-bit  identical  to  the original  compiler  binary, then 
the  compiler  source  code  accurately  represents  the 
binary.  However,  there  is  no  peer-reviewed  paper 
discussing DDC in detail,  justifying its  effectiveness, 
or discussing its ramifications.  In addition, there is  no 
public evidence that DDC has been tried, or a detailed 
description  of  how  to  perform  it  in  practice.   This 
paper resolves these problems.

This paper provides background and a description 
of the threat, followed by a description of DDC and a 
justification  for  its  effectiveness.   The  next  sections 
discuss  how diversity can be used to increase trust in a 
second  compiler and how  to  overcome practical 
challenges.   The paper  then presents  a demonstration 
of DDC, and closes with ramifications.

2. Background

2.1. Inadequate solutions

Some  simple  approaches  appear  to  solve  the 
problem  at  first  glance,  yet  have  significant 
weaknesses:
1. Compiler  binary files could be manually compared 
with  their  source  code.  This  is  impractical  given 
compilers’ large sizes, complexity, and rate of change.
2. Such  comparison  could  be  automated,  but 
optimizing compilers make such comparisons difficult, 
compiler changes make keeping such tools up-to-date 
difficult, and the tool’s complexity would be similar to 
a compiler’s.
3. A second compiler could compile the source code, 
and then the binaries could be compared automatically 
to argue semantic equivalence.  There is some work in 
determining the semantic equivalence of two different 
binaries [9], but this is very difficult.
4. Receivers  could  require  that  they  only  receive 
source code and then recompile everything themselves. 
This  fails  if  the  receiver’s  compiler  is  already 
malicious.  An attacker could also insert the attack into 
the compiler’s source; if the receiver accepts it (due to 
lack  of  diligence  or  conspiracy),  the  attacker  could 
remove the evidence in a later version.
5. Programs can be written  in interpreted  languages. 
But eventually an interpreter must be implemented by 
machine  code,  so  this  simply  moves  the  attack 
location.

2.2. Related work

Draper  recommends  screening  out  malicious 
compilers  by  writing  a  “paraphrase”  compiler 
(possibly with a few dummy statements) or a different 
compiler binary, compiling once to remove the Trojan 
horse, and then compiling a second time to produce a 
Trojan-horse-free  compiler  [10].   This  idea  is 
expanded upon by McDermott [11], who notes that the 
alternative  compiler  could  be  a  reduced-function 
compiler or one with large amounts of code unrelated 
to compilation.  Lee’s “approach #2” describes most of 
the  basic  process  of  diverse  double-compilation 
(DDC),  but  implies that  the results  might not  be bit-
for-bit  identical  [12].  Luzar  makes a similar  point  as 
Lee, describing how to rebuild a system from scratch 
using a different trusted compiler  but  not  noting that 
the final result  should be bit-for-bit  identical  if other 
factors are carefully controlled [13].

None  of  these  works  note  that  it  is  possible  to 
produce  a  result  that  is  bit-for-bit  identical  to  the 
original  compiler  binary.   This  is  an  essential 
component of DDC; DDC gains significant advantages 
over other approaches because it is easy to determine if 
two  files  are  exactly  identical.   These  previous 
approaches require each defender to insert themselves 
into the compiler  creation process  (e.g., to recompile 
their  compiler  themselves  before  using  it),  which  is 
often  impractical.   Resolving  this  by  using a central 
trusted  build  agent  simply  moves  the  best  point  of 
attack. In contrast, DDC can be used for after-the-fact 
vetting  by  third  parties,  it  does  not  require  a 
fundamental  change  in  the  compiler  delivery  or 
installation  process,  it  does  not  require  that  all 
compiler  users  receive  or  recompile  compiler  source 
code,  and  its  evidence  can  be  strengthened  using 
multiple  parties.   Also,  none  of  these  papers 
demonstrate their technique.

Magdsick  discusses  using different  versions  of  a 
compiler  and different  compiler  platforms  (CPU and 
operating system) to check binaries, but presumes that 
the compiler  itself  will  simply  be the same compiler 
(just  a  different  version).  He does  note  the  value  of 
recompiling  “everything”  to  check  it  [14].  Anderson 
notes that cross-compilation does not help if the attack 
is in the compiler [15]. Mohring argues for the use of 
recompilation  by  gcc  to  check  other  components, 
presuming  that  the  gcc  binaries  themselves  in  some 
environments  would  be  pristine[16].   He  makes  no 
notice  that  all  gcc  implementations  used  might  be 
malicious,  or  of  the  importance  of  diversity  in 
compiler  implementation.  In  his  approach  different 
compiler  versions  may be used,  so outputs  would be 
“similar”  but  not  identical;  this  leaves  the  difficult 



problem of comparing binaries for “exact equivalence” 
unresolved.

Some effort  has been made to develop proofs  of 
correctness  for  compilers  [17][18][19][20].  Goerigk 
argues  that  this  problem  requires that  proofs  of 
compilers  go down to the resulting  binary code  [21]
[22].  Such techniques are difficult to apply, even for 
simple languages.

There are a number of  papers and articles about 
employing diversity  to aid computer  security,  though 
they generally do not examine how to use diversity to 
counter  Trojan  horses  inside  compilers  or  the 
compilation  environment.   Geer  et  al.  argue  that  a 
monoculture  (an  absence  of  diversity)  in  computing 
platforms  is  a  serious  security  problem [23][24],  but 
do not discuss employing compiler diversity to counter 
this particular attack.  Forrest et al. argue that run-time 
diversity in general is beneficial for computer security 
[25].  In particular, their paper discusses techniques to 
vary  final  binaries  by  “randomized”  transformations 
affecting  compilation,  loading,  and/or  execution. 
Their goal was to automatically change the binary (as 
seen at  run-time) in some random ways sufficient  to 
make it more difficult to attack. The paper provides a 
set  of  examples,  including  adding/deleting 
nonfunctional  code,  reordering  code,  and  varying 
memory  layout.   They  demonstrated  the  concept 
through  a  compiler  that  randomized  the  amount  of 
memory allocated on a stack frame, and showed that 
the  approach  foiled  a  simple  buffer  overflow  attack. 
This  provides  little  defense  against  a  subverted 
compiler,  which  can  insert  an  attack  before  the 
countermeasures have a chance to thwart it.

Cowan  et  al.  categorize  “post  hoc”  techniques 
(adaptations  to  software  after  implementation  to 
improve  its  security), based  on  what  is  adapted  (the 
interface  or  the  implementation)  and  on  how  it  is 
adapted (either it is restricted or it is obscured).  The 
paper  does  not  specifically  address  the  problem  of 
malicious  compilers [26].

Spinellis  argues  that  “Thompson  showed us that 
one  cannot  trust  an  application’s  security  policy  by 
examining  its  source  code...  The  recent  Xbox  attack 
demonstrated  that  one  cannot  trust  a  platform’s 
security policy if the applications running on it cannot 
be trusted” [27].

It  is  worth  noting  that  the  literature  for  change 
detection (such as [28]) and intrusion detection do not 
easily  address  this  problem.   Here  the  compiler  is 
operating  normally:  it  is  expected  to  accept  source 
code and generate object code.

Faigon’s  “Constrained  Random  Testing”  detects 
compiler  defects  by  creating  many  random  test 
programs, compiling them with a compiler under test 
and  a  reference  compiler,  and  detecting  if  running 
them produces different results [29]. This is extremely 
unlikely to find the Trojan horses considered here.

3. Analysis of threat

Thompson  describes  how  to  perform  the  attack, 
but  there  are  some  important  characteristics  of  the 
attack  that  are  not  immediately  obvious  from  his 
presentation.  This section examines the threat in more 
detail and introduces terminology to describe it.

We’ll  begin  by  defining  the  threat.   The  threat 
considered in this paper is that  an attacker  may have 
modified one or more  binaries (which computers run, 
but  humans  do  not  normally  view)  so  that  the 
compilation process inserts different code than would 
be expected from examining the compiler source code, 
sufficient  so  that  recompilation  of  the  compiler  will 
cause  the  re-insertion  of  the  malicious  code.  As  a 
result,  humans can examine the original  source  code 
without finding the attack, and they can recompile the 
compiler  without  removing  the  attack.  For  our 
purposes  we’ll call  a subverted compiler  a  malicious 
compiler,  and  the  entire  attack  the  “trusting  trust” 
attack.

Next,  we’ll  examine  what  might  motivate  an 
attacker  to  actually  perform  such  an  attack,  and  the 
mechanisms  an  attacker  uses  that  make  this  attack 
work (triggers, payloads, and non-discovery).

3.1. Attacker motivation

Understanding  any  potential  threat  involves 
determining  the  benefits  to  an  attacker  of  an  attack, 
and comparing them to the attacker’s risks, costs, and 
difficulties.  Although this “trusting trust” attack may 
seem exotic,  its large benefits may outweigh its costs 
to some attackers.

The potential benefits are immense to a malicious 
attacker.  A successful attacker can completely control 
all  systems that  are compiled by that  binary and that 
binary’s  descendants,  e.g.,  they  can  have  backdoor 
passwords  inserted  for  logins   and  gain  unlimited 
privileges on entire classes of systems.  Since detailed 
source  code  reviews  will  not  find  the  attack,  even 
defenders  who  have  highly  valuable  resources  and 
check all source code are vulnerable to this attack.

For  a  widely-used  compiler,  or  one  used  to 
compile  a  widely-used program or  operating system, 
this attack could result in global control.  Control over 
banking  systems,  financial  markets,  militaries,  or 
governments could be gained with a single attack.  An 
attacker  could  possibly  acquire  limitless  funds  (by 
manipulating  the  entire  financial  system),  acquire  or 
change  extremely  sensitive  information,  or  disable  a 
nation’s critical infrastructure on command.

An  attacker  can  perform  the  attack  against 
multiple  compilers  as  well.   Once  control  is  gained 
over  all  systems  that  use  one  compiler,  trust 



relationships  and  network  interconnections  could  be 
exploited  to  ease  attack  against  other  compiler 
binaries.   This  would  be  especially  true  of  a  patient 
and careful attacker; once a compiler is subverted, it is 
likely  to  stay  subverted  for  a  long  time,  giving  an 
attacker time to use it to launch further attacks.

An  attacker  (either  an  individual  or  an 
organization) who subverted a few of the most widely 
used  compilers  of  the  most  widely-used  operating 
systems  could  effectively  control,  directly  or 
indirectly, almost every computer in existence.

The  attack  requires  knowledge  about  compilers, 
effort  to  create  the  attack,  and  access  (gained 
somehow)  to  the  compiler  binary,  but  all  are 
achievable.   Compiler  construction  techniques  are 
standard  Computer  Science  course  material.   The 
attack  requires  the  insertion  of  relatively  small 
amounts of code, so the attack can be developed by a 
single  knowledgeable  person  in  their  spare  time. 
Access rights to change the relevant compiler  binaries 
might be harder to acquire, but there are clearly some 
who have  such  privileges  already,  and  a  determined 
attacker  could  acquire  such  privileges  through  a 
variety  of  means  (including  network  attack,  social 
engineering, physical attack, bribery, and betrayal).

The amount of power this attack offers is great, so 
it  is  easy  to  imagine  a  single  person  deciding  to 
perform this attack for their own ends.  An individual 
entrusted  with  compiler  development  might  even 
succumb to the temptation if they believed they could 
not  be caught,  and the legion  of  virus writers  shows 
that  people  are willing to  write  malicious  code  even 
without gaining the control this attack can provide.

Given  such  extraordinarily  large  benefits  to  an 
attacker,  a  highly  resourced  organization  (such  as  a 
government)  might  decide  to  undertake  it.  Such  an 
organization  could  supply  hundreds  of  experts, 
working  together  full-time to  deploy   attacks  over  a 
period  of  decades.   Defending  against  this  scale  of 
attack  is  beyond  the  ability  of  even  many  military 
organizations, and is far beyond the defensive abilities 
of  the  companies  and  non-profit  organizations  who 
develop and maintain popular compilers.

In short, this is an attack that can yield complete 
control  over  a  vast  number  of  systems,  even  those 
systems whose defenders perform independent source 
code  analysis  (e.g.,  those  who  have  especially  high-
value assets), so this is worth defending against.

3.2. Triggers, payloads, and non-discovery

This  attack  depends  on  three  things:  triggers, 
payloads,  and  non-discovery.  For  purposes  of  this 
paper,  a  “trigger”  is  a  condition  determined  by  an 
attacker  in which a malicious  event is to occur  (e.g., 
malicious  code  is  inserted  into  a  program).   A 

“payload”  is  the  code  that  actually  performs  the 
malicious event (e.g., the inserted malicious code and 
the code that causes its insertion). By “non-discovery,” 
this  paper  means  that  victims  cannot  determine  if  a 
binary has been tampered with in this way; the lack of 
transparency in binary files makes this attack possible.

For  this  attack  to  be  valuable,  there  must  be  at 
least  two  triggers:  one  to  cause  a  malicious  attack 
directly  of  value  to  the  attacker  (e.g.,  detecting 
compilation  of  a  “login”  program  so  that  a  Trojan 
horse can be inserted into it), and another to propagate 
attacks into future versions of the compiler.

If a trigger is activated when the attacker does not 
intend  the  trigger  to  be  activated,  the  probability  of 
detection  increases.   However,  if  a  trigger  is  not 
activated when the attacker intends it to be activated, 
then that particular attack will be disabled.  If all the 
attacks by the compiler against itself are disabled, then 
the attack will no longer propagate; once the compiler 
is recompiled, the attacks will disappear. Similarly, if a 
payload requires a situation that (through the process 
of change) disappears, then the payload will no longer 
be effective (and its failure may reveal the attack).

In this paper, “fragility” is the susceptibility of this 
attack to failure,  i.e., that a trigger will activate when 
the attacker did not wish it to (risking a revelation of 
the  attack),  fail  to  trigger  when  the  attacker  would 
wish  it  to,  or  that  the  payload  may  fail  to  work  as 
intended.  Fragility is unfortunately less helpful to the 
defender than it  might first  appear.   An attacker  can 
counter  fragility  by  simply  incorporating  many 
narrowly-defined  triggers  and  payloads.   Even  if  a 
change causes one trigger to fail, another trigger may 
still fire.  By using multiple triggers and payloads, an 
attacker can attack multiple points in the compiler and 
attack  different  subsystems  as  final  targets  (e.g.,  the 
login  system,  the  networking  interface,  and  so  on). 
Thus,  there  may  be  enough  vulnerabilities  in  the 
resulting system to allow attackers to re-enter and re-
insert  new  triggers  and  payloads  into  a  malicious 
compiler.   Even  if  a  compiler  misbehaves  from 
malfunctioning malware, the results will often appear 
to  be  a  mysterious  compiler  defect;  if  programmers 
“code  around”  the  problem,  the  attack  will  stay 
undetected.

Since attackers do not want their malicious code 
to  be  discovered,  they  may  limit  the  number  of 
triggers/payloads  they  insert  and  the  number  of 
attacked compilers. In particular, attackers may tend to 
attack only “important” compilers (e.g., compilers that 
are widely-used or used for high-asset projects), since 
each  compiler  they  attack  (initially  or  to  add  new 
triggers and payloads) increases the risk of discovery. 
However, since these attacks can allow an attacker to 
deeply penetrate systems generated with the compiler, 
malicious compilers make it  easier  for  an attacker  to 
re-enter  a  previously  penetrated  development 



environment to refresh a binary with new triggers and 
payloads.  Thus, once a compiler has been subverted, it 
may be difficult to undo the damage without a process 
for ensuring that there are no attacks left.

The  text  above  might  give  the  impression  that 
only the compiler binary itself can influence results (or 
how  they  are  run),  yet  this  is  obviously  not  true. 
Assemblers and loaders are excellent places to place a 
trigger  (the  popular  gcc  compiler  actually  generates 
assembly  language  as  text  and  then  invokes  an 
assembler).  An  attacker  could  place  the  trigger 
mechanism in the compiler’s supporting infrastructure 
such  as  the  operating  system  kernel,  libraries,  or 
privileged programs.  In many cases writing triggers is 
more difficult for such components, but in some cases 
(such as I/O libraries) this is fairly easy to do.

4. Diverse double-compiling (DDC)

The idea of  diverse double-compiling (DDC) was 
first  created  and  posted  by  Henry  Spencer  in  1998 
[30],  inspired  by  McKeeman  et  al’s  exercise  for 
detecting compiler  defects  [31][32].   Since this time, 
this  idea  has  been  posted  in  several  places,  all  with 
very short descriptions [16][33][34].

To perform  DDC, recompile  a compiler’s source 
code twice: once with a second “trusted” compiler, and 
again using the result of the first compilation.  Then, 
check  if  the  final  result  exactly  matches  the original 
compiler  binary;  if  it  does,  then  there  is  no  Trojan 
horse  in  the  binary (given  some  assumptions  to  be 
discussed  later).   This  technique  uses  the  second 
(trusted) compiler as a check on the first. Thompson’s 
attack  assumes  that  there  is  only  one  compiler 
available;  adding  a  second  compiler  invalidates  this 
assumption.  The trusted compiler and its environment 
may be malicious, as long as that does not impact their 
result in this case, and they may be very slow.

Figure 1 illustrates  the process  of  DDC in more 
detail,  along  with  a  self-regeneration  check.  This 
figure shows  binary file(s)  for  an untrusted  compiler 
A,  binary file(s) for a trusted compiler T, and source 
code  sA   that  is  claimed  to  be  the  source  code  of 
compiler A. The result of compiling source SC using 
compiler X is notated as c(SC,X).   The shaded boxes 
show  a  compilation  step;  in  this  notation,  a 
compilation  uses  a  compiler  (input  from  the  top), 
source code (input from the left), and other data (input 
from the right), all to produce a binary (output exiting 
down).  File comparisons are shown as labeled dashed 
lines.

Before  performing  DDC,  we  should  first  do  a 
regeneration check.  This check acts like the control of 
an  experiment;  it  detects  when  a  compiler  cannot 
regenerate  itself.  Simply  take  source  code  sA and 
compile  it  with  compiler  A,  producing  binary file 

c(sA,A), that is, source sA compiled by compiler A. We 
then do a bit-for-bit comparison (Compare1) to see if 
c(sA,A) is the same as A. If c(sA,A) is the same as A, 
then  the  compiler  can  regenerate  (reproduce)  itself. 
This does not prove the absence of malice, however.

We then perform DDC. We start by using trusted 
compiler  T to compile  sA to produce  c(sA,T),  that  is, 
source  sA compiled  by  T.  We  then  use  c(sA,T)  to 
compile  sA again,  producing  the  binary c(sA,c(sA,T)). 
The  final  result  is  then  compared  (in  a  trusted 
environment)  to  the  original  A  and  c(sA,T);  if 
c(sA,c(sA,T)), A, and c(sA,T) are identical, then we can 
say that  sA accurately reflects A (we’ll see why this is 
so in  the next  section).  These  two compilation  steps 
will be called stage 1 and stage 2, and are the origin of 
its  name:  we  compile  twice,  the  first  time  using  a 
different  (diverse)  compiler.   All  three  compilations 
(self-regeneration check, stage 1, and stage 2) could be 
performed on the same or on different environments.

5. Justification

To justify this technique, we must first state some 
assumptions:
1. We  must  have  a  trusted  compilation  process  T, 
comparer,  and  environment(s)  used  in  DDC,  and 
trusted way to acquire A and sA.  “Trusted” here means 
we have reason to believe it does not have triggers and 
payloads  that  affect  those  actions  identically  as 
possible  triggers  and payloads  in the compiler  under 
test.  They may have triggers and payloads, but they do 
not matter if they do not affect the result, and defects 
are likely to be detected.  Justifying this assumption is 
discussed in section 6.
2. T  must  have  the  same  semantics  for  the  same 
constructs as A does, for the set of constructs used in 
source  code  sA.  Obviously,  a JavaTM compiler  cannot 
be  used directly as T if sA is written in the C language! 
But if sA uses any nonstandard language extensions, or 
depends  on  a  construct  not  defined  by  a  language 
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specification, then T must implement them in the way 
expected  by  sA.   If  a  different  environment  is  used, 
additional  challenges  may arise   (e.g.,  byte  ordering 
problems) unless  sA was designed to be portable. Any 
defect  in  T can  also cause  problems,  though defects 
will  be  detected  by  the  process  unless  they  do  not 
affect  sA or  A has exactly  the same defects  with the 
same semantic results.  Only the semantics need to be 
identical;  T  may  be  very  slow,  run  on  a  different 
processor  or virtual machine, and produce code for a 
different processor or virtual machine.
3. The information (such as option flags) that affects 
the  output  of  compilation  must  be  semantically 
identical when generating c(sA,A) and c(sA,c(sA,T)).  If 
the  stage  2  environment  is  different  from  the  self-
regeneration  stage’s,  minor  porting  may  be  needed. 
Any  input  such  as  command  line  parameters 
(including  option  flags  that  change  the  results), 
important  environment  variables,  libraries  used  as 
data,  and  so  on  that  affect  the  outcome  must  be 
controlled.
4. The compiler defined by sA should be deterministic 
given only its inputs,  and not use or write undefined 
values. Given the same source code and other inputs, it 
should  produce  exactly  the  same  outputs.   If  the 
compilation  is  non-deterministic,  in  some  cases  it 
could  be  handled  by  running  the  process  multiple 
times,  but  in  practice  it  is  easier  to  control  enough 
inputs  to  make  the  compiler  deterministic.  Non-
determinism  hides  other  problems,  in  any  case,  and 
makes finding flaws much more difficult; uncontrolled 
non-determinism in a compiler should be treated as a 
defect.   Although  undefined  values  may  be 
deterministic  in  a  particular  environment,  if  the 
environment  changes  the  undefined  values  may  also 
change,  with the same result.   It  may be possible  to 
work around this by carefully setting undefined values 
to a defined value, but it is better to fix the compiler to 
not  do  this  in  the  first  place.   If  timestamps  are 
embedded in the output, the time should be controlled 
so that they will be identical in both outputs or some 
alternative approach (discussed later) must be used.

The “self-regeneration” step is important; until we 
can  reproduce  the  binary of  the  compiler  A  using 
itself,  we  cannot  hope  to  reproduce  it  with  a  more 
complicated process.  This step is likely, for example, 
to  detect  non-determinism  in  A.   If  A  does  not 
regenerate itself, then we must first determine how to 
repeatably generate A.

We can now make the following assertions, if the 
preceding assumptions are true:
1. Stage  1’s  result,  c(sA,T),  will  be  functionally  the 
same as A if sA represents A.  Stage 1 simply compiles 
sA using  T  to  produce  program  c(sA,T).  c(sA,T) will 
normally have a different representation than A, since 
it was compiled using the different compiler T. Indeed, 
T  may  generate  code  for  a  completely  different 

processor. But if source  sA truly represents the source 
of compiler A, and the other assumptions are true, then 
c(sA,T) will be functionally the same as A.  E.g., if sA is 
an  x86  compiler,  compiler  A  an  x86  binary,  and  T 
generates 68K code, then c(sA,T) would run on a 68K
—but since  sA is for an x86 compiler, running c(sA,T) 
would generate x86 code.
2. Even if  A is  malicious, it  cannot  affect  the result 
c(sA,c(sA,T)).   During  DDC,  program  A  (which  is 
potentially  malicious)  is  never  used  at  all.   Instead, 
during DDC we only use a trusted compilation process 
T,  code  generated  by  T,  and  other  programs  in 
environments  which  we  trust  do  not  trigger  on 
compilation  of  sA.   Thus,  even  if  A is  malicious,  it 
cannot affect the outcome.
3. Stage  2’s result,  c(sA,c(sA,T)), will  be identical  to 
c(sA,A) and  A iff  sA accurately  represents  A.   Since 
c(sA,T) is supposed to be functionally the same as A, 
we can execute  c(sA,T) to compile the original source 
code  sA,  producing  yet  another  new  binary 
c(sA,c(sA,T)). But since this new binary was compiled 
with  a  program  that  is  supposed  to  be  functionally 
identical  to  A,  and  all  other  compilation  inputs  that 
affected compilation results were kept the same, then 
its  output  should  be  the  same  as  A...  and  since  the 
input  is  sA,  the  output  should  be the  same as  A and 
c(sA,A).  Continuing the assertion 1 example,  c(sA,T) 
will generate x86 code the same way A is supposed to, 
so if it is given sA, it should produce A. If c(sA,c(sA,T)) 
is different from A, then at least one assumption listed 
above  is  false  or  A has  been  changed  in  a  way  not 
visible in sA (e.g., by having malicious content).

Note key limitations of this technique:
1. It  only  shows  that  the  source  and  binary files 
correspond,  i.e.,  that  there  is  “nothing  hidden.”  The 
source  code  may  have  Trojan  horses  and  errors,  in 
which  case  the  binary file  will  too.  However,  if  the 
source and  binary correspond, the source code can be 
analyzed in the usual ways to find such problems.
2. It  only  shows  that  a  particular  binary and  source 
code match.  There may be other  binaries that contain 
Trojan horse(s) not represented by the source, but they 
will be different in some way.

6. Methods to increase diversity

DDC  requires  a  trusted  compiler  T  and  trusted 
environment(s)  where  there  is  a  high  degree  of 
confidence that any triggers against  sA that may be in 
compiler  A  will  not  also  be  present.   Trust  can  be 
gained in a variety of ways; one way is to perform a 
complete formal proof of compiler T’s implementation 
and  of  the  environments  used  in  DDC,  along  with 
evidence  that what actually runs is what was proved.

A simpler method to gain a great amount of trust 
is through diversity, and there are many ways we can 



gain diversity  to increase the claim’s  strength.  These 
include diversity in compiler implementation, in time, 
in environment, and in input source code.

6.1. Diversity in compiler implementation

Ideally,  compiler  T’s  binary should  be  for  a 
completely different implementation than of compiler 
A.   Compiler  T’s  binary could  include  triggers  and 
payloads for other compilers (such as compiler A), but 
this is much less likely, since an attacker would then 
have to subvert  the development  process  of  multiple 
compiler binaries to do so.

Ideally,  compiler  T has  never  been compiled  by 
any  version  of  compiler  A,  even  in  T’s  initial 
bootstrap.  This is because compiler A could insert into 
the  binary code  some  routines  to  check  for  any 
processing of  compiler  A (itself),  so that  it  can later 
“re-infect” itself.  This kind of attack is difficult to do, 
however,  especially  since  bootstrapping  is  usually 
done  very early  in a compiler’s  development  and an 
attacker  may not  even be aware  of  the compiler  T’s 
development  at  that  time.  One  of  the  most  obvious 
locations where this might be practical might be in the 
I/O routines. However, I/O routines are more likely to 
be  viewed  at  the  assembly  level  (e.g.,  to  do 
performance analysis), so an attacker risks discovery if 
they subvert I/O routines.

6.2. Diversity in time

If  compiler  T  and  the  DDC environment  were 
developed long before the compiler A, and they do not 
share  a  common  implementation  heritage,  it  is 
improbable that compiler T or its environment would 
include  relevant  triggers  for  a  not-yet-implemented 
compiler (Magdsick makes a similar point [14]). It is 
possible  that  an  attacker  could  arrange  to  include 
triggers in compiler A’s source code once compiler A 
is developed, but this is extremely difficult to do, and 
is  even  more  difficult  to  maintain  over  time  as 
compilers change.

Using a newer compiler  binary to check an older 
compiler  gains  less  confidence;  it  is  easier  for  a 
recently-released  compiler  binary to  include  triggers 
and  payloads  for  many  older  compilers,  including 
completely different compilers.  Still, this requires the 
subversion of multiple different compilers’ binaries, so 
even this case can increase confidence.

Diversity  achieved  via  earlier  development  can 
only provide significant confidence if it can be clearly 
verified that compiler T and/or the DDC environments 
are truly the ones that  existed at the earlier time.  In 
particular, old versions should not be simply acquired 
over  the  Internet  without  independent  verification, 
because a resourceful attacker could tamper with those 

copies.  Instead, protected copies of the original media 
should  be  preferred  to  reduce  the  risk of  tampering. 
Other copies can be used to verify that the data used is 
correct.   Cryptographic  hashes  can be used to verify 
the media; multiple hash algorithms should be used, in 
case a hash algorithm is broken.

An older binary version of compiler A can be used 
as compiler T, if there is reason to believe that the old 
version is not malicious or that any Trojan horse in the 
old version of A will not be triggered by sA. Note that 
this is a weaker test; the common ancestor could have 
been  subverted.   This  technique  gives  greater 
confidence if the changes in the compiler have been so 
significant  that  the  newer  version  is  in  essence  a 
different compiler, but it would be best if compiler T 
were truly a separate implementation.

6.3. Diversity in environment

Different environments could be used.  Compiler 
T could generate code for a different environment; T 
and/or  c(sA,T)  could  run  on  a different  environment. 
The  term  “environment”  here  means  the  entire 
infrastructure  supporting  the  compiler  including  the 
CPU  architecture,  operating  system,  supporting 
libraries, and so on. It should not be running any other 
processes (which might try to use kernel vulnerabilities 
to  detect  a  compilation  and  subvert  it).  Using  a 
completely  different  environment  counters  Trojan 
horses whose triggers and payloads are actually in the 
binaries of  the  environment,  as  well  as  countering 
triggers  and  payloads  that  only  work  on  a  specific 
operating system or CPU architecture.

These  benefits  could  be  partly  achieved  through 
emulation of a different system.  There is always the 
risk  that  the  emulation  system  or  underlying 
environment  could  be  subverted  specifically  to  give 
misleading results, but attackers will find this difficult 
to  achieve,  particularly  if  the  emulation  system  is 
developed specifically for this test (an attacker might 
have  to  develop  the  attack  before  the  system  was 
built!).

6.4. Diversity in source code input

Another  way  to  add  diversity  would  be  to  use 
mutations of compiler A’s source code as the input to 
the first stage of DDC [10][11].  Compiler T is then a 
source  code  transform,  a  compiler  (possibly  the 
original compiler), and possibly a postprocessing step.

Semantic-preserving mutations change the source 
code  without  changing  its  semantics.   This  could 
include  actions  such  as  renaming  items  (such  as 
variables,  functions,  and/or  filenames),  reordering 
statements  where  the  order  is  irrelevant,  regrouping 
statements,  intentionally  performing  unnecessary 



operations that will not produce an output, changing to 
different  algorithms  that  produce  sufficiently  similar 
results,  and  changing  compiler  opcode  values  for 
internal data structures.  Even trivial changes, such as 
changing whitespace,  increases diversity (these trivial 
changes can still be enough to counter triggers if those 
triggers  depend  on  them).  Forrest  discusses  several 
methods  for  introducing  diversity  [25].   McDermott 
notes  that  even  changed  semantics  are  helpful,  e.g., 
performing  excess  tasks  whose  results  are  ignored 
[11].

By inserting such mutations,  it is less likely that 
triggers designed to attack compiler A will activate in 
the  compiler  used  inside  T,  and  if  they  do,  the 
payloads in compiler T are less likely to be effective. 
These mutations could be implemented by automated 
tools, or even manually.  Since it is part of T, trust is 
given to the mutator (be it manual or automated). If the 
mutator has an unintentional defect, the result will be 
simply  that  a  difference  will  be  identified;  tracking 
backwards  to  explain  the  difference  will  identify  the 
defect, so defects in the mutator are not as serious.

7. Practical challenges

There  are  many  practical  challenges  to 
implementing this technique, but they can generally be 
overcome.

Uncontrolled  nondeterminism  or  using 
uninitialized  data  may  cause  a  compiler  to  generate 
different answers for the same source input.  It may be 
easiest to modify the compiler so that it can be made to 
be deterministic  (e.g.,  add an option  to set  a random 
number  seed)  and  to  never  use  uninitialized  data. 
Differences  that  do  not  affect  the  outcome  are  fine, 
e.g.,  heap  memory  allocations  during  compilation 
often allocate different memory addresses,  but  this is 
only  a  problem  if  the  compiler  output  changes 
depending  on  those  addresses’  specific  values. 
Roskind reports that variance in heap address locations 
affected  the  output  of  at  least  some  versions  of  the 
Javasoft javac compiler. He also stated that he felt that 
this  was  a  bug,  noting  that  this  behavior  made  port 
validation extremely difficult [35].

It  may  be  difficult  to  compile  sA using  existing 
trusted compilers.  Thankfully, there are many possible 
solutions if  sA cannot be compiled by a given trusted 
compiler.  An  existing  trusted  compiler  could  be 
modified (e.g., to add extensions) so it can compile sA. 
Another  alternative  is  to  create  a  trusted  preprocess 
step that is applied to  sA, possibly done by hand; as a 
result T would be defined as being the preprocess step 
plus the trusted compiler. Trusted compiler T could be 
created by using an existing trusted compiler (but one 
that  cannot  compile  sA directly)  to  compile  another 
existing trusted compiler that can compile  sA, i.e., the 

first  trusted  compiler  is  used  to  bootstrap  another 
compiler. It is possible to write a new trusted compiler 
from  scratch;  since  performance  is  irrelevant  and  it 
only  needs  to  be  able  to  compile  one  program,  this 
may not be difficult. An old version of A could be used 
as T, but that is far less diverse so the results are far 
less convincing, and risks  “pop-up” attacks.

A  “pop-up”  attack,  as  defined  in  this  paper,  is 
where an attacker includes a self-perpetuating attack in 
only  some  versions  of  the  source  code  (where  the 
attack “pops up”), with the idea that defenders may not 
examine the source code of those particular versions in 
detail.  Imagine that T is used to determine that an old 
version of compiler  A (call  it  A1) corresponds to its 
source  sA1.   Now  imagine  that  an  attacker  cannot 
modify  binaries  directly  (e.g.,  because  they  are 
regenerated by a suspicious user), but that the attacker 
can modify the source  code of the compiler  (e.g., by 
breaking into its repository).  The attacker could sneak 
malevolent  self-perpetuating  code  into  sA2 (which  is 
used to generate A2), and then remove that malevolent 
code from sA3.  If A2 is used to generate A3, then A3 
may be malicious, even though examining sA3 will not 
reveal an attack.  Examination of every change in the 
source  code  at  each  stage  can  prevent  this,  but  this 
must  be  thorough;  examining  only  the  source’s 
beginning and end-state will miss the attack. It is safer 
to re-run DDC on every release; if that is impractical, 
at least do it periodically to reduce the attack window.

Compilers  may have multiple  subcomponents.  It 
may be necessary to break sA into subcomponents and 
handle them separately, possibly in a certain order to 
address dependencies.  Section 8 demonstrates this.

Inexact  comparisons  may  be  needed.  The 
comparisons  (Compare1  and  2)  need  not  require  an 
identical  result  as  long  as  it  can  be  shown  that  the 
differences  that  do  not  cause  a  change  in  behavior. 
This  might  occur  if,  for  example,  outputs  included 
embedded  compilation  timestamps.   However, 
showing  that  differences  in  files  do  not  cause 
differences in the functionality,  in the presence of an 
adversary,  is  extremely  difficult.   An alternative  that 
can  work  in  some  cases  is  to  run  additional  self-
generation stages until a stable result occurs.  Another 
approach is to first work to make the results identical, 
and then show that the steps leading from that trusted 
point do not introduce an attack.

The  environment  of  A  may  be  untrusted.   As 
noted  earlier,  an  attacker  could  place  the  trigger 
mechanism in the compiler’s supporting infrastructure 
such  as  the  operating  system  kernel,  libraries,  or 
privileged  programs.   Triggers  would  be  especially 
easy to place in assemblers, linkers, and loaders.  But 
even  unprivileged  programs  might  be  enough  to 
subvert  compilations;  an  attacker  could  create  a 
program that exploited unknown kernel vulnerabilities. 
The  DDC technique can be used to cover these cases 



as  well.   Simply  redefine  A  as  the  set  of  all 
components to be checked; this could even be the set 
of all software that runs on that machine (including all 
software run at boot time).  This means that the source 
code for all this software to be checked is sA.  Consider 
obtaining A and sA from some read-only medium (e.g., 
CD-ROM or  inactive  hard  drive);  do  not  trust  A to 
produce  itself  (e.g.,  by  copying  A’s  files  using  A)! 
Then, using DDC on a different (trusted) environment, 
rebuild A using  sA; in the limit this would regenerate 
all of the operating system (including boot software), 
application programs, and so on.  Files that are directly 
reviewed  by  humans  (e.g.,  interpreted  non-binaries) 
can  be  “compiled”  to  themselves.   If  DDC  can 
regenerate  the  original  A,  then  the  entire  set  of 
components included in A are represented by the entire 
set of source code in sA.  If A or its environment might 
have code that shrouds sA, always use a trusted system 
to view/print sA when examining sA.

A  resourceful  attacker  might  attack  the  system 
performing  DDC (e.g., over a network) to subvert its 
results.   DDC should  be done  on  isolated  system(s). 
Ideally, the systems used to implement DDC should be 
rebuilt  from  trustworthy  media,  not  connected  to 
external  networks  at  all,  and  not  run  any  programs 
other than those necessary for the test.

Few  will  want  to  do  DDC themselves.   This 
technique  might  be  difficult  to  do  the  first  time  for 
some compilers,  and in any case there is no need for 
everyone  to  perform  this  check.    Organization(s) 
trusted by many others (such as government agencies 
or  trusted  organizations  sponsored  by  them)  could 
perform  these  techniques  on  a  variety  of 
compilers/environments,  as  they  are  released,  and 
report  the  cryptographic  hash  values  of  the  binaries 
and their corresponding source code. The source code 
would  not  need to  be  released  to  the  world,  so  this 
technique  could  be  applied  to  proprietary  software. 
This  would  allow  others  to  quickly  check  if  the 
binaries  they  received  were,  in  fact,  what  their 
software developers intended to send.  If someone did 
not trust  those  organizations,  they  could  ask  for 
another organization they did trust to do this (including 
themselves,  if  they  can  get  the  source  code). 
Organizations that do checks like this have elsewhere 
been termed “trusted build agents” [16].

8. Demonstration using tcc

There is no public evidence that this technique has 
been used.  One 2004 gcc mailing list posting stated, 
“I’m not aware of  any ongoing effort,”  [36];  another 
responded, “I guess we all sorta hope someone else is 
doing  it.”  [37].  This  section  describes  its  first 
demonstration.

A public demonstration requires a compiler whose 
source code is publicly available.  Other ideal traits for 
the initial test case included being relatively small and 
self-contained, running quickly (so that test runs would 
be rapid), having an open source software license (so 
the experiment could be repeated and changes could be 
publicly redistributed [38]), and being easily compiled 
by  another  compiler.   The  compiler  needed  to  be 
relatively  defect-free,  since  defects  would  interfere 
with these tests. The Tiny C Compiler, abbreviated as 
TinyCC or tcc, was chosen as it appeared to meet these 
criteria.

The  compiler  tcc  was  developed  by  Fabrice 
Bellard  and  is  available  from  its  website  at 
http://www.tinycc.org/.   This  project  began  as  the 
Obfuscated Tiny C Compiler (OTCC), a very small C 
compiler  Bellard  wrote  to  win  the  International 
Obfuscated  C  Code  Contest  (IOCCC)  in  2002.   He 
then  expanded  this  small  compiler  so  that  it  now 
supports  all  of ANSI C, most  of the newer ISO C99 
standard, and many GNU C extensions including inline 
assembly.   The  compiler  tcc  appeared  to  meet  the 
requirements  given above.   In addition,  tcc had been 
used to create “tccboot,” a Linux distribution that first 
booted  the  compiler  and  then  recompiled  the  entire 
kernel as part  of its boot  process.   This capability  to 
compile  almost  all  code  at  boot  time  could  be  very 
useful for future related work, and suggested that the 
compiler was relatively defect-free.

The  following  sections  describe  the  test 
configuration, the DDC process, problems with casting 
8-bit  values  and  long  double  constants,  and  final 
results.

8.1. Test configuration

All tests  ran on an x86 system running Red Hat 
Fedora  Core  3.  This  included  Linux  kernel  version 
2.6.11-1.14_FC3  and  gcc  version  3.4.3-22.fc3.   gcc 
was  both  the  bootstrap  compiler  and  the  trusted 
compiler for this test; tcc was the simulated potentially 
malicious compiler.

First,  a  traditional  chain  of  recompilations  was 
performed  using  tcc  versions  0.9.20,  0.9.21,  and 
0.9.22.  After  bootstrapping,  a  compiler  would  be 
updated  and  used  to  compile  itself.  Their  gzip 
compressed tar files have the following SHA-1 values 
(provided so others can repeat this experiment):
6db41cbfc90415b94f2e53c1a1e5db0ef8105eb8  0.9.20
19ef0fb67bbe57867a590d07126694547b27ef41  0.9.21
84100525696af2252e7f0073fd6a9fcc6b2de266  0.9.22

As  is  usual,  any  such  sequence  must  start  with 
some sort of bootstrap of the compiler. gcc was used to 
bootstrap  tcc-0.9.20,  causing  a  minor  challenge:  gcc 
3.4.3  would not compile  tcc-0.9.20  directly  because 
gcc 3.4.3 added additional checks not present in older 



versions  of  gcc.  In  tcc-0.9.20,  some  functions  are 
declared like this, using a gcc extension to C:
void  *__bound_ptr_add(void  *p,  int  offset) 
__attribute__((regparm(2)));

but  the  definitions  of  those  functions  in  tcc’s 
source code omit the __attribute__((regparm(...))). gcc 
3.4.3 perceives this as inconsistent and will not accept 
it.  Since  this  is  only  used  by  the  initial bootstrap 
compiler, we can claim that the bootstrap compiler has 
two steps: a preprocessor  that removes these regparm 
statements, and the regular gcc compiler. The regparm 
text is only an optimization with no semantic change, 
so this does not affect our result.

This  process  created  a  tcc  version  0.9.22  binary 
file which we have good reasons to believe does not 
have any hidden code in the  binary, so it can be used 
as a test case.  Now imagine an end-user with only this 
binary and the source code for tcc version 0.9.22.  This 
user has no way to ensure that  the compiler  has not 
been tampered with (if it has been tampered with, then 
its  binary will be different,  but  this hypothetical  end-
user has no “pristine” file to compare against).  Would 
DDC correctly produce the same result?

8.2. Diverse double-compiling tcc

Real  compilers  are  often  divided  into  multiple 
pieces.   Compiler tcc as used here has two parts:  the 
main  compiler  (file  tcc)  and  the  compiler  run-time 
library (file libtcc1.a; tcc sometimes copies portions of 
this  into  its  results).   For  purposes  of  this 
demonstration, these were the only components being 
checked;  everything  else  was  assumed  to  be 
trustworthy for this simple test (this assumption could 
be removed with more effort).   The  binary file tcc is 
generated from the source file tcc.c and other files; this 
set is notated stcc.  Note: the tcc package also includes a 
file called tcclib, which is not the same as libtcc1.

Figure 2 shows the process used to perform DDC 
with  compiler  tcc.  First,  a  self-regeneration  test  was 
performed to make sure we could regenerate files tcc 
and  libtcc1;  this  was  successful.  Then  DDC was 
performed. Notice that stages one and two, which are 
notionally  one  compilation  each,  are  actually  two 
compilations  each  when  applied  to  compiler  tcc 
because we must handle two components in each stage 
(in particular, we must create the recompiled run-time 
before running a program that uses it).

One challenge is that the run-time code is used as 
an archive format (.a format), and this format includes 
a  compilation  timestamp of  each component.   These 
timestamps  will,  of  course,  be  different  from  any 
originals unless special efforts are made.  Happily, the 
runtime code is first compiled into an ELF .o format 
(which  does  not  include  these timestamps),  and then 
transformed  into  an  archive  format  using  a  trusted 

program (ar).   So,  for  testing purposes,  the libtcc1.o 
files were compared and not the libtcc1.a files.

Unfortunately,  when this  process  was  first  tried, 
the DDC result did not match the result from the chain 
of updates, even when only using formats that did not 
include compilation timestamps. After much effort this 
was  tracked  to  two  problems:  a  compiler  defect  in 
sign-extending  values  cast  to  8-bit  values,  and 
uninitialized  data  used  while  storing  long  double 
constants.  Each  of  these  issues  is  discussed  next, 
followed by the results after resolving them.

8.3. Defect in sign-extending cast 8-bit values

A subtle  defect  in  tcc  caused  serious  problems. 
The defect occurs if a 32-bit unsigned value is cast to a 
signed 8-bit value, and then that result is compared to 
a 32-bit unsigned value without first storing the result 
in  a  variable  (which  should  sign-extend  the  8-bit 
value).   Here  is  a  brief  description  of  why  this 
construct is used, why it is a defect, and the impact of 
this defect.

The x86 processor machine instructions can store 
4  byte  constants  as  4  bytes,  but  since  many  such 
constants are in the range -128..127,  constants in this 
range can also be stored in a shorter 1-byte format (by 
specifying  a  specific  ModR/M  value  in  the  machine 
instruction).   Where  possible,  tcc  tries  to  use  the 

Fig. 2. Diverse double-compiling with 
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shorter form, using statements like this to detect them 
(where e.v is of type uint32, an unsigned 32-bit value):
if (op->e.v == (int8_t)op->e.v && !op->e.sym) {

Unfortunately,  the  value  cast  to  (int8_t)  is  not 
sign-extended by tcc version 0.9.22 when compared to 
an unsigned 32-bit integer.  Version 0.9.22 does drop 
the upper 24 bits  on the first cast  to the 8-bit  signed 
integer, but it fails to sign-extend the remaining 8-bit 
signed value unless the 8-bit value is first stored in a 
variable.  This is a defect, at least because tcc’s source 
code depends on a drop with sign-extension and tcc is 
supposed to be self-hosting.  It is even more obvious 
that this is a defect because using a temporary variable 
to  store  the  intermediate  result  does enable  sign-
extension.   Besides,  this  is  documented  as  a  known 
defect  in  tcc  0.9.22’s  own  TODO  documentation, 
though  this  was  only  discovered  after  laboriously 
tracking down the problem.  According to Kernighan 
[39]  section  A6.2  and  the  ISO/IEC  C99  standard 
section  6.3.1.3  [40],  converting  to  a  smaller  signed 
type is implementation-defined, but conversion of that 
to a larger unsigned value should  sign-extend.   Note 
that gcc does do the drop and sign-extension (as tcc’s 
author expects).

This  defect  results  in  incorrect  code  being 
generated by tcc 0.9.22 if it is given values in the range 
0x80..0xff  in  this  construct.   But  when  compiling 
itself, tcc is lucky and merely generates slightly longer 
code  than  necessary  in  certain  cases.   Thus,  a  gcc-
compiled tcc generates code of this form (where 3-byte 
codes are used) when compiling some inline assembly 
in the tcc runtime library libtcc1:
1b5: 2b 4d dc  sub 0xffffffdc(%ebp),%ecx
1b8: 1b 45 d8  sbb 0xffffffd8(%ebp),%eax

But  a  tcc-compiled  tcc  incorrectly  chooses  the 
“long” form of the same instructions (which have the 
same effect—note the identical disassembly):
1b5: 2b 8d dc ff ff ff  sub 0xffffffdc(%ebp),%ecx
1bb: 1b 85 d8 ff ff ff  sbb 0xffffffd8(%ebp),%eax

One of  the  key  assumptions  in  DDC is  that  the 
two compilers agree on the semantics of the language 
being  compiled.  This  tcc  defect  violates  this 
assumption,  causing  the  files  to  unexpectedly  differ. 
To resolve this, tcc was modified slightly so it would 
store such intermediate values in a temporary variable, 
avoiding the defect; a better long-term solution would 
be to fix the defect.

This example shows that  DDC can be a good test 
for unintentional compiler defects—small defects that 
might  not  be  noticed  elsewhere  may  immediately 
surface!

8.4. Long double constant problem

Another  problem  resulted  from  how  tcc  outputs 
long double constants.  The tcc outputs floating point 
constants in the “data” section, but when tcc compiles 
itself, the tcc.c line:

if (f2 == 0.0) {

outputs  inconsistent  data  section  values  to 
represent 0.0.  The tcc compiled by gcc stores 11 0x00 
bytes followed by 0xc9,  while tcc  compiled by itself 
generates 12 0x00 bytes.   Because f2 has type “long 
double,” tcc eventually stores this 0.0 in memory as a 
long  double  value.   The  problem  is  that  tcc’s  “long 
double” uses only 10 bytes, but it is stored in 12 bytes, 
and tcc’s  source  code  does  not  initialize  the  extra  2 
bytes.  The two excess “junk” bytes end up depending 
on the underlying environment,  causing variations  in 
the output  [41].   In normal operation these bytes are 
ignored and thus cause no problems.

To resolve this, the value “0.0” was replaced with 
the  expression  (f1-f1),  since  f1  is  a  long  double 
variable known to have a finite value there (e.g., it is 
not  a  NaN).   This  is  semantically  the  same  and 
eliminated the problem.   A better  long-term solution 
for tcc would be to always set these “excess” values to 
constants (such as 0x00).

8.5. Final results with tcc demonstration

After patching tcc 0.9.22 as described above, and 
running  it  through  the  processes  described  above, 
exactly the same files were produced through the chain 
of updates and through  DDC. This is shown by these 
SHA-1 hash values  for  the  compiler  and its  runtime 
library, which were identical for both processes:
c1ec831ae153bf33bff3df3c248b12938960a5b6 tcc
794841efe4aad6e25f6dee89d4b2d0224c22389b libtcc1.o

But  can  we  say  anything  about  unpatched  tcc 
0.9.22?  We can, once we realize that we can (for test 
purposes) pretend that the patched version came first, 
and  that  we  then  applied  changes  to  create  the 
unpatched  version.   Since  we  have  shown  that  the 
patched  version’s  source  accurately  represents  the 
binary identified above, we only need to examine the 
effects  of  a  reversed  change  that  “creates”  the 
unpatched version.  Visual  inspection of the reversed 
change quickly shows that it has no malicious triggers 
and payloads.  Thus, we can add one more chain from 
the trusted compiler to a “new” version of the compiler 
that  is  the  untouched  tcc-0.9.22.   Because  of  the 
changes  in  semantics  and  the  flow of  data,  to  get  a 
stable result  we end up needing to recompile  several 
times.   In the end, the following  SHA-1 hash values 
are the correct binaries for tcc-0.9.22 on an x86 in this 
environment  when  tcc  is  self-compiled  a  sufficient 
number of times to become “stable”:
d530cee305fdc7aed8edf7903d80a33b6b3ee1db tcc
42c1a134e11655a3c1ca9846abc70b9c82013590 libtcc1.o

9. Ramifications

This paper has summarized and demonstrated how 
to  detect  Thompson’s  “Trusting  Trust”  attack,  using 
diverse double-compiling (DDC).  This technique has 



many  strengths:  it  can  be  completely  automated, 
applied to any compiled language (including common 
languages  like  C),  and  does  not  require  the  use  of 
complex  mathematical  proof  techniques.   Second-
source  compilers  and  environments  are  desirable  for 
other reasons, so they are often already available, and 
if not they are also relatively easy to create (since high 
performance  is  unnecessary).  Some  unintentional 
defects  in  either  compiler  are  also  detected  by  the 
technique.   The technique  can be easily  expanded to 
cover  all  of  the  software  running  on  a  system 
(including  the  operating  system  kernel,  bootstrap 
software, libraries, microcode, and so on) as long as its 
source code is available.

Passing  this  test  when  the  trusted  compiler  and 
environment is not proven is not a mathematical proof, 
but  more like a legal one.   The test  can be made as 
strong as you wish, by decreasing the likelihood (e.g., 
through  diversity)  that  the  DDC  process  (including 
trusted compiler T and the environments) also have the 
malicious  code.   Multiple  diverse  DDC  tests  can 
strengthen the evidence even further.  A defender can 
easily  make  it  extremely  unlikely  that  an  attacker 
could subvert the DDC technique.

Note  that  this  technique  only  shows  that  the 
source  code  corresponds  with  a  given  compiler’s 
binary,  i.e.,  that  nothing  is  hidden.  The  binary may 
have errors or malevolent code; this technique simply 
ensures that these errors and malevolent code  can be 
found by examining the source code.  Passing this test 
makes source code analysis more meaningful.

As  with  any  approach,  this  technique  has 
limitations.   The source  code  for  the compiler  being 
tested must  be available to the tester,  and the results 
are more useful to those who have access to the source 
code  of  what  was  tested  (the  compiler  and/or  the 
environment under test).  Since the technique requires 
two compilers to agree on semantics, this is easier to 
do  for  popular  languages  where  there  is  a  public 
language specification and where no patents inhibit the 
creation of a second implementation.  The technique is 
far simpler if the compiler being tested was designed 
to  be  portable  and  avoids  using  nonstandard 
extensions.   It  can  be  applied  to  microcode  and 
hardware  specification  data  as  well,  but  applying  it 
directly to hardware (like CPUs) requires an “equality” 
operation for hardware, which is more challenging.

This  technique  does  have  potential  policy 
implications.   To  protect  themselves  and  their 
citizenry,  governments  could  enact  policies  requiring 
that they receive all of the source code (including build 
instructions)  necessary  to  rebuild  a  compiler  and  its 
entire  environment,  and  for  it  to  be  sufficiently 
portable so it  can be built  with an alternative trusted 
compiler  and  environment.   Multiple  compilers  are 
easier  to  acquire  for  standardized  languages,  so 
governments  could  insist  on  the  use  of  standard 

languages,  specified  in  legally  unencumbered  public 
standards  and  implemented  by  multiple  vendors,  to 
implement  compilers  and  critical  infrastructure. 
Organizations  (such  as  governments)  could  establish 
groups to do this testing and report  the cryptographic 
hashes of corresponding binaries and source.

Future potential work includes examining a larger 
and more popular compiler (such as gcc), including an 
entire operating system as the “compiler A” under test, 
relaxing  the  requirement  for  exact  equivalence,  and 
demonstrating  DDC with a more diverse environment 
(e.g.,  by  using  a  much  older  operating  system  and 
different CPU architecture).
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