
1

Free-Libre / Open Source Software
(FLOSS) and Software Assurance /

Software Security

David A. Wheeler
December 11, 2006

This presentation contains the views of the author and does not indicate
endorsement by IDA, the U.S. government, or the U.S. Department of Defense.

2

Definition: Free-Libre / Open
Source Software (FLOSS)

• Free-Libre / Open Source Software (FLOSS)
programs have licenses giving users the
freedom:

– to run the program for any purpose,
– to study and modify the program, and
– to freely redistribute copies of either the

original or modified program (without
royalties, etc.)

• Not non-commercial, not necessarily no-charge
– Often supported via commercial companies

• Synonyms: Libre software, FLOS, OSS/FS
• Antonyms: proprietary software, closed software

3

Definition: Software Assurance

• “Software assurance (SwA) relates to the
level of confidence that software functions as
intended and is free of vulnerabilities, either
intentionally or unintentionally designed or
inserted as part of the software.”

4

Outline

• Introduction: FLOSS development
• Extreme claims
• Unintentional vulnerabilities

– Statistics on security & reliability
– Open design: A security fundamental
– FLOSS security preconditions (unintentional)
– Proprietary advantages… not necessarily

• Intentional/malicious vulnerabilities
• High assurance
• FLOSS bottom line
• Backup: High assurance (details), Common Criteria,

formal methods

5

Typical FLOSS Development Model

Developer

Trusted
Developer

• FLOSS users typically use software without paying licensing fees
• FLOSS users typically pay for training & support (competed)
• FLOSS users are responsible for developing new improvements &
any evaluations that they need; often cooperate/pay others to do so
• Active development community like a consortium

Trusted
Repository

Distributor
User

Source Code →

Bug Reports

Improvements (as source code) and
evaluation results: User as Developer

“Stone soup development”

Development
Community

6

Extreme claims

• Extreme claims
– “FLOSS is always more secure”
– “Proprietary is always more secure”

• Reality: Neither FLOSS nor proprietary
always better

– Some specific FLOSS programs are more
secure than their competing proprietary
competitors

• Include FLOSS options when acquiring,
then evaluate

7

FLOSS Security (1)

• Browser “unsafe” days in 2004: 98% Internet Explorer, 15%
Mozilla/Firefox (half of Firefox’s MacOS-only)

• IE 21x more likely to get spyware than Firefox [U of Wash.]
• Faster response: Firefox 37 days, Windows 134.5 days
• Evans Data: Linux rarely broken, ~virus/Trojan-free
• Serious vulnerabilities: Apache 0, IIS 8 / 3yrs
• J.S. Wurzler hacker insurance costs 5-15% more for

Windows than for Unix or Linux
• Bugtraq vulnerability 99-00: Smallest is OpenBSD,

Windows largest (Don't quintuple-count!)
• Windows websites more vulnerable in practice

17% (GNU/Linux)66% (Windows)Defaced

66.75% (Apache)24.81% (IIS)Deployed websites (by name)

29.6% (GNU/Linux)49.6% (Windows)Deployed Systems

FLOSSProprietaryCategory

8

FLOSS Security (2)

• Unpatched networked systems: 3 months Linux,
hours Windows (variance minutes ... months)
[Honeynet.org, Dec 2004]

– Windows SP2 believed to be better than previous
versions of Windows

• 50% Windows vulnerabilities are critical, vs. 10% in
Red Hat [Nicholas Petreley, Oct 2004]

• Viruses primarily Windows phenomenon
– 60,000 Windows, 40 Macintosh, 5 for commercial Unix

versions, 40 for Linux
• 91% broadband users have spyware on their home

computers (proprietary OS) [National Cyber Security
Alliance, May 2003] vs. ~0% on FLOSS

9

FLOSS Security (3)

• FLOSS systems scored better on security
[Payne, Information Systems Journal
2002]

• Survey of 6,344 software development
managers April 2005 favored FLOSS [BZ
Research]

10

Reliability

• Fuzz studies found FLOSS apps
significantly more reliable [U Wisconsin]

– Proprietary Unix failure rate: 28%,23%
– FLOSS: Slackware Linux 9%, GNU utilities 6%
– Windows: 100%; 45% if forbid certain Win32 message formats

• GNU/Linux vs. Windows NT 10 mo study [ZDNet]
– NT crashed every 6 weeks; both GNU/Linuxes, never

• IIS web servers >2x downtime of Apache [Syscontrol AG]
• Linux kernel TCP/IP had smaller defect density [Reasoning]

0

100

Failure Rate

0

0.5

1

Reported Repaired

Proprietary Average (0.55, 0.41)

Linux kernel (0.10, 0.013)

11

FLOSS Always More Secure?

• No: Sendmail, bind 4
• Must examine case-by-case

– But there is a principle that gives FLOSS a
potential advantage…

12

Open design:
A security fundamental

• Saltzer & Schroeder [1974/1975] - Open
design principle

– the protection mechanism must not depend on
attacker ignorance

• FLOSS better fulfills this principle
• Security experts perceive FLOSS

advantage
– Bruce Schneier: “demand OSS for anything

related to security”
– Vincent Rijmen (AES): “forces people to write

more clear code & adhere to standards”
– Whitfield Diffie: “it’s simply unrealistic to

depend on secrecy for security”

13

Problems with hiding source &
vulnerability secrecy

• Hiding source doesn’t halt attacks
– Presumes you can keep source secret

• Attackers may extract or legitimately get it
– Dynamic attacks don’t need source or binary

• Observing output from inputs sufficient for attack
– Static attacks can use pattern-matches against binaries
– Source can be regenerated by disassemblers &

decompilers sufficiently to search for vulnerabilities
– Secrecy inhibits helpers, while not preventing attackers
– “Security by Obscurity” widely denegrated

• Hiding source slows vulnerability response
• Vulnerability secrecy doesn’t halt attacks

– Vulnerabilities are a time bomb and are likely to be
rediscovered by attackers

– Brief secrecy works (10-30 days), not months/years

14

Can “Security by Obscurity” be
a basis for security?

• “Security by Obscurity” can work, but iff:
– Keeping secret actually improves security
– You can keep the critical information a secret

• For obscurity itself to give significant security:
– Keep source secret from all but a few people. Never sell or

reveal source to many. E.G.: Classify
– Keep binary secret; never sell binary to outsiders

• Use software protection mechanisms (goo, etc.)
• Remove software binary before exporting system

– Do not allow inputs/outputs of program to be accessible by
others – no Internet/web access

• Useless in most cases!
– Incompatible with proprietary off-the-shelf model

• Proprietary software can be secure – but not this way

15

FLOSS Security Preconditions
(Unintentional vulnerabilities)

1. Developers/reviewers need security
knowledge

– Knowledge more important than licensing
2. People have to actually review the code

– Reduced likelihood if niche/rarely-used, few
developers, rare computer language, not
really FLOSS

– More contributors, more review
• Is it truly community-developed?

– Evidence suggests this really happens! (next)
3. Problems must be fixed

– Far better to fix before deployment
– If already deployed, need to deploy fix

16

Is FLOSS code ever examined?
Yes.

• Most major FLOSS projects have specific code reviews;
some have rewards

– Mozilla Security Bug Bounty Program ($500)
– Linux: hierarchical review, “sparse” tool

• Disseminated review groups (second check):
– OpenBSD (for OpenBSD)
– Debian-audit (for Debian Linux)

• Static analysis tool vendors test using FLOSS
• Vulnerability Discovery and Remediation, Open Source

Hardening Project (DHS/Coverity/Stanford)
• Many independents (see Bugtraq, etc.)
• Business case: Must examine to change (reason to review)
• Users' increased transparency encourages examination &

feedback

17

Evaluating FLOSS?
Look for evidence

• First, identify your security requirements
• Look for evidence at FLOSS project website

– User’s/Admin Guides: discuss make/keep it secure?
– Process for reporting security vulnerabilities?
– Cryptographic signatures for current release?
– Developer mailing lists discuss security issues and

work to keep the program secure?
– Active community

• Use other information sources where available
– E.G., CVE… but absence is not necessarily good
– External reputation (e.g., OpenBSD)

• See http://www.dwheeler.com/oss_fs_eval.html

18

Proprietary advantages…
not necessarily

• Experienced developers who understand security produce
better results

– Experience & knowledge are critical, but...
– FLOSS developers often very experienced &

knowledgeable too (BCG study: average 11yrs
experience, 30 yrs old) – often same people

• Proprietary developers higher quality?
– Dubious; FLOSS often higher reliability,security
– Market rush often impairs proprietary quality

• No guarantee FLOSS is widely reviewed
– True! Unreviewed FLOSS may be very insecure
– Also true for proprietary (rarely reviewed!). Check it!

• Can sue vendor if insecure/inadequate
– Nonsense. EULAs forbid, courts rarely accept, costly to

sue with improbable results, you want sw not a suit

19

Inserting malicious code &
FLOSS: Basic concepts

• “Anyone can modify FLOSS, including attackers”
– Actually, you can modify proprietary programs too…

just use a hex editor. Legal niceties not protection!
– Trick is to get result into user supply chain
– In FLOSS, requires subverting/misleading the trusted

developers or trusted repository/distribution…
– and no one noticing the public malsource later

• Different threat types: Individual...nation-state
• Distributed source aids detection
• Large community-based FLOSS projects tend to

have many reviewers from many countries
– Makes attacks more difficult
– Consider supplier as you would proprietary software
– Risk larger for small FLOSS projects

20

Malicious attack approaches:
FLOSS vs. proprietary

• Repository/distribution system attack
– Traditional proprietary advantage: can more easily disconnect

repository from Internet, not shared between different groups
• But development going global, so disconnect less practical

– Proprietary advantage: distribution control
– OSS advantage: Easier detection & recovery via many copies

• Malicious trusted developers
– OSS slight advantage via review, but weak (“fix” worse!)
– OSS slight advantage: More likely to know who developers are
– Reality: For both, check who is developing it!

• Malicious untrusted developer
– Proprietary advantage: Fewer untrusted developers

• Sub-suppliers, “Trusted” developers may be malicious
– OSS long-term advantages: Multiple reviewers (more better)

• Unclear winner – No evidence proprietary always better

21

Examples: Malicious code &
FLOSS

• Linux kernel attack – repository insertion
– Tried to hide; = instead of ==
– Attack failed (CM, developer review, conventions)

• Debian/SourceForge repository subversions
– Countered & restored by external copy comparisons

• Often malicious code made to look like unintentional code
– Techniques to counter unintentional still apply
– Attacker could devise to work around tools... but won't

know in FLOSS what tools are used!
• Borland InterBase/Firebird Back Door

– user: politically, password: correct
– Hidden for 7 years in proprietary product
– Found after release as FLOSS in 5 months
– Unclear if malicious, but has its form

22

Security Preconditions
(Malicious vulnerabilities)

• Counter Repository/distribution system attack
– Widespread copies, comparison process
– Evidence of hardened repository
– Digitally signed distribution

• Counter Malicious trusted developers
– Find out who's developing your system (always!)

• Counter Malicious untrusted developer
– Strong review process

• As with unintentional vulnerabilities: Security-
knowledgeable developers, review, fix what's found

– Update process, for when vulnerabilities found

23

High Assurance

• High assurance (HA) software:
– Has an argument that could convince skeptical parties

that the software will always perform or never perform
certain key functions without fail... convincing evidence
that there are absolutely no software defects. CC EAL 6+

– Significant use of formal methods, high test coverage
– High cost – requires deep pockets at this time
– A few OSS & proprietary tools to support HA dev
– Few proprietary, even fewer OSS HA at this time

• Theoretically OSS should be better for HA
– In mathematics, proofs are often wrong, so only peer

review of proofs valid [De Millo,Lipton,Perlis]. OSS!
• HA developers/customers very conservative & results often

secret, so rarely apply “new” approaches like OSS... yet
– Cannot easily compare in practice... yet

24

Can FLOSS be applied to
custom systems?

• Effective FLOSS systems typically have
built a large development community

– Share costs/effort for development & review
– Same reason that proprietary off-the-shelf

works: Multiple customers distribute costs
• Custom systems can be built from FLOSS

(& proprietary) components
• If no pre-existing system, sometimes can

create a generalized custom system
– Then generalized system FLOSS, with a custom

configuration for your problem
– Do risk/benefit analysis before proceeding

25

Bottom Line

• Neither FLOSS nor proprietary always
better

– But clearly many cases where FLOSS is better
• FLOSS use increasing industry-wide

– In some areas, e.g., web servers, it dominates
• Policies must not ignore or make it

difficult to use FLOSS where applicable
– Can be a challenge because of radically

different assumptions & approach
• Include FLOSS options when acquiring,

then evaluate

26

Appendix: High Assurance

27

What's high assurance
software?

• “High assurance software”: has an argument that
could convince skeptical parties that the software
will always perform or never perform certain key
functions without fail... convincing evidence that
there are absolutely no software defects. CC EAL
6+

– Today, extremely rare. Critical safety/security
• Medium assurance software: not high assurance,

but significant effort expended to find and remove
important flaws through review, testing, and so on.
CC EAL 4-5

– No proof it's flawless, just effort to find and fix

28

Many FLOSS tools support high
assurance development

• Configuration Management: CVS, Subversion (SVN), GNU Arch,
git/Cogito, Bazaar, Bazaar-NG, Monotone, Mercurial, Darcs, svk,
Aegis, CVSNT, FastCST, OpenCM, Vesta, Superversion, Arx,
Codeville...

• Testing: opensourcetesting.org lists 275 tools Apr 2006, inc.
Bugzilla (tracking), DejaGnu (framework), gcov (coverage), ...

• Formal methods: Community Z tools (CZT) , ZETA, ProofPower,
Overture, ACL2, Coq, E, Otter/MACE, PTTP, Isabelle, HOL4, HOL
Light, Gandalf, Maude Sufficient Completeness Checker, KeY,
RODIN, Hybrid Logics Model Checker, Spin, NuSMV 2, BLAST, Java
PathFinder, SATABS, DiVinE, Splint (as LCLint), ...

• Analysis implementation: Common LISP (GNU Common LISP (GCL),
CMUCL, GNU CLISP), Scheme, Prolog (GNU Prolog, SWI-Prolog,
Ciao Prolog, YAP), Maude, Standard ML, Haskell (GHC, Hugs), ...

• Code implementation: C (gcc), Ada (gcc GNAT), ...
– Java/C#: FLOSS implementations (gcj/Mono) maturing; gc issue

29

Test coverage

• Many high assurance projects must meet
measurable requirements on their tests.
Common measures:

– Statement (line) coverage: % program
statements exercised by at least one test.

– Branch coverage: % of “branches” from
decision points (if/then/else, switch/case, ?:)
exercised by at least one test

– Some argue unit testing (low-level tests) should
achieve 100% in both; most say 80%-90% okay

– Many other measures
• FLOSS tools available (e.g., gcov)

30

Formal methods: Introduction

• Formal methods: application of rigorous
mathematical techniques to software development

• Three levels (& often focused application):
– 0: Formal specification (using mathematics)
– 1: Go deeper, e.g., (a) refine specification to a

mathematically-defined design or more detailed
model, and/or (b) prove important properties of the
specification and/or model

– 2: Fully prove that the code matches the design
specification. Very expensive, if done at all, often
done with only the most critical portions

• Tool types: Specification handling, theorem
provers, model checkers, ...

31

Formal Method Specification
Languages

• Z: ISO/IEC 13568:2002
– Community Z tools (CZT) project, ZETA,

ProofPower
• VDM

– Overture
• B

– RODIN Project
• UML Object Constraint Language

– KeY

32

Sample formal method tools

• ACL2
– Industrial-strength theorem prover using LISP notation,

Boyer-Moore family (ACM Software System Award)
– Used for processor designs, microcode, machine code,

Java bytecode, ... found 3 defects in BSD C string library
• Otter

– High-performance general-purpose (math) prover
• Isabelle, HOL 4

– Theorem prover, “drive” via ML
• Spin

– Model-checking to verify distributed software systems.
Used for Netherlands flood control barrier, Deep Space 1,
Cassini, Mars Exploration Rovers, Deep Impact. ACM
Software System Award

33

High assurance components
rare; OSS especially

• Closest: GNAT Pro High-Integrity Edition (HIE), EROS,
few library routines

• FLOSS strong in medium assurance
• Why few high assurance?

– Too expensive to do using FLOSS? Unlikely, if
there's an economic incentive

– No possibility of a rational economic model?
Unlikely; components exist where cost avoidance
sensible

– Expertise too specialized? Probably partly true
– Few considered the possibility? Yes; many potential

customers/users have failed to consider an FLOSS
option at all (e.g., consortium)

34

High assurance conclusions

• Many FLOSS tools available for creating high
assurance components

• Few FLOSS high assurance components
– Decision-makers failing to consider FLOSS-

based approaches... they should consider them,
so can choose when appropriate

• Government-funded software development in
academia should normally be released under a
FLOSS license

– Many tools lost forever if not released as FLOSS
– Build on it vs. start over. GPL-compatible

• FLOSS developers should consider developing or
improving high-assurance components or tools

35

Backup Slides

36

Common Criteria & FLOSS

• Common Criteria (CC) can be used on FLOSS
– Red Hat Linux, Novell/SuSE Linux, OpenSSL

• CC matches FLOSS imperfectly
– CC developed before rise of FLOSS
– Doesn’t credit mass peer review or detailed code review
– Requires mass creation of documentation not normally

used in FLOSS development
• Government policies discriminate against FLOSS

– Presume that vendor will pay hundreds of thousands or
millions for a CC evaluation (“big company” funding)

• Presumes nearly all small business & FLOSS
insecure

– Presume that “without CC evaluation, it’s not secure”
– Need to fix policies to meet real goal: secure software

• Government-funded evaluation for free use/support?
• Multi-Government funding?
• Alternative evaluation processes?

37

Formal Methods & FLOSS

• Formal methods applicable to FLOSS &
proprietary

• Difference: FLOSS allows public peer review
– In mathematics, peer review often finds problems in

proofs; many publicly-published proofs are later
invalidated

– Expect true for software-related proofs, even with proof-
checkers (invalid models/translation, invalid
assumptions/proof methods)

– Proprietary sw generally forbids public peer review
• Formal methods challenges same

– Few understand formal methods (anywhere)
– Scaling up to “real” systems difficult
– Costs of applying formal methods—who pays?

• May be even harder for FLOSS
• Not easy for proprietary either

38

MITRE 2003 Report

“One unexpected result was the degree to which Security
depends on FOSS. Banning FOSS would remove certain types
of infrastructure components (e.g., OpenBSD) that currently
help support network security. It would also limit DoD access
to—and overall expertise in—the use of powerful FOSS
analysis and detection applications that hostile groups could
use to help stage cyberattacks. Finally, it would remove the
demonstrated ability of FOSS applications to be updated
rapidly in response to new types of cyberattack. Taken
together, these factors imply that banning FOSS would have
immediate, broad, and strongly negative impacts on the ability
of many sensitive and security-focused DoD groups to defend
against cyberattacks.”

“Use of Free and Open Source Software in the US Dept. of Defense” (MITRE,
sponsored by DISA), Jan. 2, 2003, http://www.egovos.org/

39

Acronyms

• COTS: Commercial Off-the-Shelf (either
proprietary or FLOSS)

• DoD: Department of Defense
• HP: Hewlitt-Packard Corporation
• JTA: Joint Technical Architecture (list of

standards for the DoD); being renamed to DISR
• OSDL: Open Source Development Labs
• FLOSS: Open Source Software
• RFP: Request for Proposal
• RH: Red Hat, Inc.
• U.S.: United States

Trademarks belong to the trademark holder.

40

Interesting Documents/Sites

• “Why OSS/FS? Look at the Numbers!”
http://www.dwheeler.com/oss_fs_why.html

• “Use of Free and Open Source Software in the US Dept. of
Defense” (MITRE, sponsored by DISA)

• President's Information Technology Advisory Committee
(PITAC) -- Panel on Open Source Software for High End
Computing, October 2000

• “Open Source Software (OSS) in the DoD,” DoD memo
signed by John P. Stenbit (DoD CIO), May 28, 2003

• Center of Open Source and Government (EgovOS)
http://www.egovos.org/

• OpenSector.org http://opensector.org
• Open Source and Industry Alliance http://www.osaia.org
• Open Source Initiative http://www.opensource.org
• Free Software Foundation http://www.fsf.org
• OSS/FS References

http://www.dwheeler.com/oss_fs_refs.html

 1

1

Free-Libre / Open Source Software
(FLOSS) and Software Assurance /

Software Security

David A. Wheeler
December 11, 2006

This presentation contains the views of the author and does not indicate
endorsement by IDA, the U.S. government, or the U.S. Department of Defense.

2

Definition: Free-Libre / Open
Source Software (FLOSS)

• Free-Libre / Open Source Software (FLOSS)
programs have licenses giving users the
freedom:

– to run the program for any purpose,
– to study and modify the program, and
– to freely redistribute copies of either the

original or modified program (without
royalties, etc.)

• Not non-commercial, not necessarily no-charge
– Often supported via commercial companies

• Synonyms: Libre software, FLOS, OSS/FS
• Antonyms: proprietary software, closed software

3

Definition: Software Assurance

• “Software assurance (SwA) relates to the
level of confidence that software functions as
intended and is free of vulnerabilities, either
intentionally or unintentionally designed or
inserted as part of the software.”

 4

4

Outline

• Introduction: FLOSS development
• Extreme claims
• Unintentional vulnerabilities

– Statistics on security & reliability
– Open design: A security fundamental
– FLOSS security preconditions (unintentional)
– Proprietary advantages… not necessarily

• Intentional/malicious vulnerabilities
• High assurance
• FLOSS bottom line
• Backup: High assurance (details), Common Criteria,

formal methods

 5

5

Typical FLOSS Development Model

Developer

Trusted
Developer

• FLOSS users typically use software without paying licensing fees
• FLOSS users typically pay for training & support (competed)
• FLOSS users are responsible for developing new improvements &
any evaluations that they need; often cooperate/pay others to do so
• Active development community like a consortium

Trusted
Repository

Distributor
User

Source Code →

Bug Reports

Improvements (as source code) and
evaluation results: User as Developer

“Stone soup development”

Development
Community

Development model
User
User as developer
Developer
Trusted developer
Trusted repository
Distributor
Stone soup development
Source code
Licensing fees
Training
Support
Evaluations
Improvements
Cooperate

6

Extreme claims

• Extreme claims
– “FLOSS is always more secure”
– “Proprietary is always more secure”

• Reality: Neither FLOSS nor proprietary
always better

– Some specific FLOSS programs are more
secure than their competing proprietary
competitors

• Include FLOSS options when acquiring,
then evaluate

7

FLOSS Security (1)

• Browser “unsafe” days in 2004: 98% Internet Explorer, 15%
Mozilla/Firefox (half of Firefox’s MacOS-only)

• IE 21x more likely to get spyware than Firefox [U of Wash.]
• Faster response: Firefox 37 days, Windows 134.5 days
• Evans Data: Linux rarely broken, ~virus/Trojan-free
• Serious vulnerabilities: Apache 0, IIS 8 / 3yrs
• J.S. Wurzler hacker insurance costs 5-15% more for

Windows than for Unix or Linux
• Bugtraq vulnerability 99-00: Smallest is OpenBSD,

Windows largest (Don't quintuple-count!)
• Windows websites more vulnerable in practice

17% (GNU/Linux)66% (Windows)Defaced

66.75% (Apache)24.81% (IIS)Deployed websites (by name)

29.6% (GNU/Linux)49.6% (Windows)Deployed Systems

FLOSSProprietaryCategory

8

FLOSS Security (2)

• Unpatched networked systems: 3 months Linux,
hours Windows (variance minutes ... months)
[Honeynet.org, Dec 2004]

– Windows SP2 believed to be better than previous
versions of Windows

• 50% Windows vulnerabilities are critical, vs. 10% in
Red Hat [Nicholas Petreley, Oct 2004]

• Viruses primarily Windows phenomenon
– 60,000 Windows, 40 Macintosh, 5 for commercial Unix

versions, 40 for Linux
• 91% broadband users have spyware on their home

computers (proprietary OS) [National Cyber Security
Alliance, May 2003] vs. ~0% on FLOSS

9

FLOSS Security (3)

• FLOSS systems scored better on security
[Payne, Information Systems Journal
2002]

• Survey of 6,344 software development
managers April 2005 favored FLOSS [BZ
Research]

 10

10

Reliability

• Fuzz studies found FLOSS apps
significantly more reliable [U Wisconsin]

– Proprietary Unix failure rate: 28%,23%
– FLOSS: Slackware Linux 9%, GNU utilities 6%
– Windows: 100%; 45% if forbid certain Win32 message formats

• GNU/Linux vs. Windows NT 10 mo study [ZDNet]
– NT crashed every 6 weeks; both GNU/Linuxes, never

• IIS web servers >2x downtime of Apache [Syscontrol AG]
• Linux kernel TCP/IP had smaller defect density [Reasoning]

0

100

Failure Rate

0

0.5

1

Reported Repaired

Proprietary Average (0.55, 0.41)

Linux kernel (0.10, 0.013)

Reliability
Fuzz
GNU/Linux
Windows
Crash
Downtime
TCP/IP
Defect
Defect density

11

FLOSS Always More Secure?

• No: Sendmail, bind 4
• Must examine case-by-case

– But there is a principle that gives FLOSS a
potential advantage…

12

Open design:
A security fundamental

• Saltzer & Schroeder [1974/1975] - Open
design principle

– the protection mechanism must not depend on
attacker ignorance

• FLOSS better fulfills this principle
• Security experts perceive FLOSS

advantage
– Bruce Schneier: “demand OSS for anything

related to security”
– Vincent Rijmen (AES): “forces people to write

more clear code & adhere to standards”
– Whitfield Diffie: “it’s simply unrealistic to

depend on secrecy for security”

13

Problems with hiding source &
vulnerability secrecy

• Hiding source doesn’t halt attacks
– Presumes you can keep source secret

• Attackers may extract or legitimately get it
– Dynamic attacks don’t need source or binary

• Observing output from inputs sufficient for attack
– Static attacks can use pattern-matches against binaries
– Source can be regenerated by disassemblers &

decompilers sufficiently to search for vulnerabilities
– Secrecy inhibits helpers, while not preventing attackers
– “Security by Obscurity” widely denegrated

• Hiding source slows vulnerability response
• Vulnerability secrecy doesn’t halt attacks

– Vulnerabilities are a time bomb and are likely to be
rediscovered by attackers

– Brief secrecy works (10-30 days), not months/years

14

Can “Security by Obscurity” be
a basis for security?

• “Security by Obscurity” can work, but iff:
– Keeping secret actually improves security
– You can keep the critical information a secret

• For obscurity itself to give significant security:
– Keep source secret from all but a few people. Never sell or

reveal source to many. E.G.: Classify
– Keep binary secret; never sell binary to outsiders

• Use software protection mechanisms (goo, etc.)
• Remove software binary before exporting system

– Do not allow inputs/outputs of program to be accessible by
others – no Internet/web access

• Useless in most cases!
– Incompatible with proprietary off-the-shelf model

• Proprietary software can be secure – but not this way

 15

15

FLOSS Security Preconditions
(Unintentional vulnerabilities)

1. Developers/reviewers need security
knowledge

– Knowledge more important than licensing
2. People have to actually review the code

– Reduced likelihood if niche/rarely-used, few
developers, rare computer language, not
really FLOSS

– More contributors, more review
• Is it truly community-developed?

– Evidence suggests this really happens! (next)
3. Problems must be fixed

– Far better to fix before deployment
– If already deployed, need to deploy fix

Username “politically” passowrd “correct” was a major Interbase backdoor,
hidden for years when it was proprietary, and found quickly soon after it was
releaesd as FLOSS. It’s not known if, or how widely, this was exploited before
it was revealed.

 16

16

Is FLOSS code ever examined?
Yes.

• Most major FLOSS projects have specific code reviews;
some have rewards

– Mozilla Security Bug Bounty Program ($500)
– Linux: hierarchical review, “sparse” tool

• Disseminated review groups (second check):
– OpenBSD (for OpenBSD)
– Debian-audit (for Debian Linux)

• Static analysis tool vendors test using FLOSS
• Vulnerability Discovery and Remediation, Open Source

Hardening Project (DHS/Coverity/Stanford)
• Many independents (see Bugtraq, etc.)
• Business case: Must examine to change (reason to review)
• Users' increased transparency encourages examination &

feedback

17

Evaluating FLOSS?
Look for evidence

• First, identify your security requirements
• Look for evidence at FLOSS project website

– User’s/Admin Guides: discuss make/keep it secure?
– Process for reporting security vulnerabilities?
– Cryptographic signatures for current release?
– Developer mailing lists discuss security issues and

work to keep the program secure?
– Active community

• Use other information sources where available
– E.G., CVE… but absence is not necessarily good
– External reputation (e.g., OpenBSD)

• See http://www.dwheeler.com/oss_fs_eval.html

18

Proprietary advantages…
not necessarily

• Experienced developers who understand security produce
better results

– Experience & knowledge are critical, but...
– FLOSS developers often very experienced &

knowledgeable too (BCG study: average 11yrs
experience, 30 yrs old) – often same people

• Proprietary developers higher quality?
– Dubious; FLOSS often higher reliability,security
– Market rush often impairs proprietary quality

• No guarantee FLOSS is widely reviewed
– True! Unreviewed FLOSS may be very insecure
– Also true for proprietary (rarely reviewed!). Check it!

• Can sue vendor if insecure/inadequate
– Nonsense. EULAs forbid, courts rarely accept, costly to

sue with improbable results, you want sw not a suit

19

Inserting malicious code &
FLOSS: Basic concepts

• “Anyone can modify FLOSS, including attackers”
– Actually, you can modify proprietary programs too…

just use a hex editor. Legal niceties not protection!
– Trick is to get result into user supply chain
– In FLOSS, requires subverting/misleading the trusted

developers or trusted repository/distribution…
– and no one noticing the public malsource later

• Different threat types: Individual...nation-state
• Distributed source aids detection
• Large community-based FLOSS projects tend to

have many reviewers from many countries
– Makes attacks more difficult
– Consider supplier as you would proprietary software
– Risk larger for small FLOSS projects

20

Malicious attack approaches:
FLOSS vs. proprietary

• Repository/distribution system attack
– Traditional proprietary advantage: can more easily disconnect

repository from Internet, not shared between different groups
• But development going global, so disconnect less practical

– Proprietary advantage: distribution control
– OSS advantage: Easier detection & recovery via many copies

• Malicious trusted developers
– OSS slight advantage via review, but weak (“fix” worse!)
– OSS slight advantage: More likely to know who developers are
– Reality: For both, check who is developing it!

• Malicious untrusted developer
– Proprietary advantage: Fewer untrusted developers

• Sub-suppliers, “Trusted” developers may be malicious
– OSS long-term advantages: Multiple reviewers (more better)

• Unclear winner – No evidence proprietary always better

21

Examples: Malicious code &
FLOSS

• Linux kernel attack – repository insertion
– Tried to hide; = instead of ==
– Attack failed (CM, developer review, conventions)

• Debian/SourceForge repository subversions
– Countered & restored by external copy comparisons

• Often malicious code made to look like unintentional code
– Techniques to counter unintentional still apply
– Attacker could devise to work around tools... but won't

know in FLOSS what tools are used!
• Borland InterBase/Firebird Back Door

– user: politically, password: correct
– Hidden for 7 years in proprietary product
– Found after release as FLOSS in 5 months
– Unclear if malicious, but has its form

22

Security Preconditions
(Malicious vulnerabilities)

• Counter Repository/distribution system attack
– Widespread copies, comparison process
– Evidence of hardened repository
– Digitally signed distribution

• Counter Malicious trusted developers
– Find out who's developing your system (always!)

• Counter Malicious untrusted developer
– Strong review process

• As with unintentional vulnerabilities: Security-
knowledgeable developers, review, fix what's found

– Update process, for when vulnerabilities found

23

High Assurance

• High assurance (HA) software:
– Has an argument that could convince skeptical parties

that the software will always perform or never perform
certain key functions without fail... convincing evidence
that there are absolutely no software defects. CC EAL 6+

– Significant use of formal methods, high test coverage
– High cost – requires deep pockets at this time
– A few OSS & proprietary tools to support HA dev
– Few proprietary, even fewer OSS HA at this time

• Theoretically OSS should be better for HA
– In mathematics, proofs are often wrong, so only peer

review of proofs valid [De Millo,Lipton,Perlis]. OSS!
• HA developers/customers very conservative & results often

secret, so rarely apply “new” approaches like OSS... yet
– Cannot easily compare in practice... yet

24

Can FLOSS be applied to
custom systems?

• Effective FLOSS systems typically have
built a large development community

– Share costs/effort for development & review
– Same reason that proprietary off-the-shelf

works: Multiple customers distribute costs
• Custom systems can be built from FLOSS

(& proprietary) components
• If no pre-existing system, sometimes can

create a generalized custom system
– Then generalized system FLOSS, with a custom

configuration for your problem
– Do risk/benefit analysis before proceeding

25

Bottom Line

• Neither FLOSS nor proprietary always
better

– But clearly many cases where FLOSS is better
• FLOSS use increasing industry-wide

– In some areas, e.g., web servers, it dominates
• Policies must not ignore or make it

difficult to use FLOSS where applicable
– Can be a challenge because of radically

different assumptions & approach
• Include FLOSS options when acquiring,

then evaluate

26

Appendix: High Assurance

• Click to add an outline

27

What's high assurance
software?

• “High assurance software”: has an argument that
could convince skeptical parties that the software
will always perform or never perform certain key
functions without fail... convincing evidence that
there are absolutely no software defects. CC EAL
6+

– Today, extremely rare. Critical safety/security
• Medium assurance software: not high assurance,

but significant effort expended to find and remove
important flaws through review, testing, and so on.
CC EAL 4-5

– No proof it's flawless, just effort to find and fix

28

Many FLOSS tools support high
assurance development

• Configuration Management: CVS, Subversion (SVN), GNU Arch,
git/Cogito, Bazaar, Bazaar-NG, Monotone, Mercurial, Darcs, svk,
Aegis, CVSNT, FastCST, OpenCM, Vesta, Superversion, Arx,
Codeville...

• Testing: opensourcetesting.org lists 275 tools Apr 2006, inc.
Bugzilla (tracking), DejaGnu (framework), gcov (coverage), ...

• Formal methods: Community Z tools (CZT) , ZETA, ProofPower,
Overture, ACL2, Coq, E, Otter/MACE, PTTP, Isabelle, HOL4, HOL
Light, Gandalf, Maude Sufficient Completeness Checker, KeY,
RODIN, Hybrid Logics Model Checker, Spin, NuSMV 2, BLAST, Java
PathFinder, SATABS, DiVinE, Splint (as LCLint), ...

• Analysis implementation: Common LISP (GNU Common LISP (GCL),
CMUCL, GNU CLISP), Scheme, Prolog (GNU Prolog, SWI-Prolog,
Ciao Prolog, YAP), Maude, Standard ML, Haskell (GHC, Hugs), ...

• Code implementation: C (gcc), Ada (gcc GNAT), ...
– Java/C#: FLOSS implementations (gcj/Mono) maturing; gc issue

29

Test coverage

• Many high assurance projects must meet
measurable requirements on their tests.
Common measures:

– Statement (line) coverage: % program
statements exercised by at least one test.

– Branch coverage: % of “branches” from
decision points (if/then/else, switch/case, ?:)
exercised by at least one test

– Some argue unit testing (low-level tests) should
achieve 100% in both; most say 80%-90% okay

– Many other measures
• FLOSS tools available (e.g., gcov)

30

Formal methods: Introduction

• Formal methods: application of rigorous
mathematical techniques to software development

• Three levels (& often focused application):
– 0: Formal specification (using mathematics)
– 1: Go deeper, e.g., (a) refine specification to a

mathematically-defined design or more detailed
model, and/or (b) prove important properties of the
specification and/or model

– 2: Fully prove that the code matches the design
specification. Very expensive, if done at all, often
done with only the most critical portions

• Tool types: Specification handling, theorem
provers, model checkers, ...

31

Formal Method Specification
Languages

• Z: ISO/IEC 13568:2002
– Community Z tools (CZT) project, ZETA,

ProofPower
• VDM

– Overture
• B

– RODIN Project
• UML Object Constraint Language

– KeY

32

Sample formal method tools

• ACL2
– Industrial-strength theorem prover using LISP notation,

Boyer-Moore family (ACM Software System Award)
– Used for processor designs, microcode, machine code,

Java bytecode, ... found 3 defects in BSD C string library
• Otter

– High-performance general-purpose (math) prover
• Isabelle, HOL 4

– Theorem prover, “drive” via ML
• Spin

– Model-checking to verify distributed software systems.
Used for Netherlands flood control barrier, Deep Space 1,
Cassini, Mars Exploration Rovers, Deep Impact. ACM
Software System Award

33

High assurance components
rare; OSS especially

• Closest: GNAT Pro High-Integrity Edition (HIE), EROS,
few library routines

• FLOSS strong in medium assurance
• Why few high assurance?

– Too expensive to do using FLOSS? Unlikely, if
there's an economic incentive

– No possibility of a rational economic model?
Unlikely; components exist where cost avoidance
sensible

– Expertise too specialized? Probably partly true
– Few considered the possibility? Yes; many potential

customers/users have failed to consider an FLOSS
option at all (e.g., consortium)

34

High assurance conclusions

• Many FLOSS tools available for creating high
assurance components

• Few FLOSS high assurance components
– Decision-makers failing to consider FLOSS-

based approaches... they should consider them,
so can choose when appropriate

• Government-funded software development in
academia should normally be released under a
FLOSS license

– Many tools lost forever if not released as FLOSS
– Build on it vs. start over. GPL-compatible

• FLOSS developers should consider developing or
improving high-assurance components or tools

35

Backup Slides

• Click to add an outline

36

Common Criteria & FLOSS

• Common Criteria (CC) can be used on FLOSS
– Red Hat Linux, Novell/SuSE Linux, OpenSSL

• CC matches FLOSS imperfectly
– CC developed before rise of FLOSS
– Doesn’t credit mass peer review or detailed code review
– Requires mass creation of documentation not normally

used in FLOSS development
• Government policies discriminate against FLOSS

– Presume that vendor will pay hundreds of thousands or
millions for a CC evaluation (“big company” funding)

• Presumes nearly all small business & FLOSS
insecure

– Presume that “without CC evaluation, it’s not secure”
– Need to fix policies to meet real goal: secure software

• Government-funded evaluation for free use/support?
• Multi-Government funding?
• Alternative evaluation processes?

37

Formal Methods & FLOSS

• Formal methods applicable to FLOSS &
proprietary

• Difference: FLOSS allows public peer review
– In mathematics, peer review often finds problems in

proofs; many publicly-published proofs are later
invalidated

– Expect true for software-related proofs, even with proof-
checkers (invalid models/translation, invalid
assumptions/proof methods)

– Proprietary sw generally forbids public peer review
• Formal methods challenges same

– Few understand formal methods (anywhere)
– Scaling up to “real” systems difficult
– Costs of applying formal methods—who pays?

• May be even harder for FLOSS
• Not easy for proprietary either

38

MITRE 2003 Report

“One unexpected result was the degree to which Security
depends on FOSS. Banning FOSS would remove certain types
of infrastructure components (e.g., OpenBSD) that currently
help support network security. It would also limit DoD access
to—and overall expertise in—the use of powerful FOSS
analysis and detection applications that hostile groups could
use to help stage cyberattacks. Finally, it would remove the
demonstrated ability of FOSS applications to be updated
rapidly in response to new types of cyberattack. Taken
together, these factors imply that banning FOSS would have
immediate, broad, and strongly negative impacts on the ability
of many sensitive and security-focused DoD groups to defend
against cyberattacks.”

“Use of Free and Open Source Software in the US Dept. of Defense” (MITRE,
sponsored by DISA), Jan. 2, 2003, http://www.egovos.org/

39

Acronyms

• COTS: Commercial Off-the-Shelf (either
proprietary or FLOSS)

• DoD: Department of Defense
• HP: Hewlitt-Packard Corporation
• JTA: Joint Technical Architecture (list of

standards for the DoD); being renamed to DISR
• OSDL: Open Source Development Labs
• FLOSS: Open Source Software
• RFP: Request for Proposal
• RH: Red Hat, Inc.
• U.S.: United States

Trademarks belong to the trademark holder.

40

Interesting Documents/Sites

• “Why OSS/FS? Look at the Numbers!”
http://www.dwheeler.com/oss_fs_why.html

• “Use of Free and Open Source Software in the US Dept. of
Defense” (MITRE, sponsored by DISA)

• President's Information Technology Advisory Committee
(PITAC) -- Panel on Open Source Software for High End
Computing, October 2000

• “Open Source Software (OSS) in the DoD,” DoD memo
signed by John P. Stenbit (DoD CIO), May 28, 2003

• Center of Open Source and Government (EgovOS)
http://www.egovos.org/

• OpenSector.org http://opensector.org
• Open Source and Industry Alliance http://www.osaia.org
• Open Source Initiative http://www.opensource.org
• Free Software Foundation http://www.fsf.org
• OSS/FS References

http://www.dwheeler.com/oss_fs_refs.html

