
1

Open Source Software (OSS)

David A. Wheeler
March 12, 2007

This presentation contains the views of the author and does not indicate 
endorsement by IDA, the U.S. government, or the U.S. Department of Defense.



2

Outline

• Introduction to OSS
– What is it?
– Nearly all OSS is commercial off-the-shelf (COTS)
– Typical OSS development model

• Value to government
– Why would governments use or create OSS?
– OSS Challenges
– Examples of use

• Selecting COTS OSS: What’s the Same? Different?
• Starting OSS project
• Security
• Foolish vs. Sensible Policies
• Remarks



3

What is Open Source Software 
(OSS)?

• OSS: software licensed to users with these freedoms:
– to run the program for any purpose,
– to study and modify the program, and
– to freely redistribute copies of either the original or 

modified program (without royalties, etc.)
• Synonyms: libre software, Free software*, FOSS, FLOSS
• Antonyms: proprietary software, closed software
• Widely used; OSS #1 or #2 in many markets

– “… plays a more critical role in the DoD than has generally 
been recognized.” [MITRE 2003]

• Not non-commercial…

* The term “Free software” sometimes means OSS, and sometimes instead means “no charge”



4

Nearly all OSS is
Commercial Off-the-Shelf (COTS)

• Federal Acquisition Regulation (FAR) prefers COTS and 
NDI; commercial item = “licensed to general public”:

– Agencies must “(a) Conduct market research to determine [if] commercial items 
or nondevelopmental items are available … (b) Acquire [them] when… available 
… (c) Require prime contractors and subcontractors at all tiers to incorporate, to 
the maximum extent practicable, [them] as components...”

– Commercial item is “(1) Any item, other than real property, that is of a type 
customarily used by the general public or by non-governmental entities for 
purposes [not unique to a government], and (i) Has been sold, leased, or 
licensed to the general public; or (ii) Has been offered for sale, lease, or license
to the general public... (3) [Above with] (i) Modifications of a type customarily 
available in the commercial marketplace; or (ii) Minor modifications… made to 
meet Federal Government requirements. ”

– True for nearly all off-the-shelf (OTS) OSS, so it’s commercial item/COTS
• OSS projects usually seek improvements = financial gain

– U.S. Code Title 17, section 101 defines “financial gain” as including “receipt, or 
expectation of receipt, of anything of value, including the receipt of other 
copyrighted works.”

• Many OSS projects supported by commercial companies
– IBM, Sun, Red Hat, Novell, Microsoft (WiX, IronPython, SFU, Codeplex site)

• Often developers paid (2004: 37K/38K Linux changes)
• OSS licenses and projects approve of commercial support
• Use COTS/NDI because users share costs – OSS does!



5

OSS Development Model

Developer

Trusted
Developer

• OSS users typically use software without paying licensing fees
• OSS users typically pay for training & support (competed)
• OSS users are responsible for developing new improvements &
any evaluations that they need; often cooperate/pay others to do so

Trusted
Repository

Distributor
User

Source Code →

Bug Reports

Improvements (as source code) and 
evaluation results: User as Developer

“Stone soup development”



6

Why would governments use or 
create OSS (value for government)?

• Can evaluate in detail, lowering risk
– Can see if meets needs (security, etc.)
– Mass peer review typically greatly increases quality/security
– Aids longevity of records, government transparency

• Can copy repeatedly at no additional charge (lower TCO)
– Support may have per-use charges (compete-able)

• Can share development costs with other users
• Can modify for special needs & to counter attack

– Even if you’re the only one who needs the modification
• Control own destiny: Freedom from vendor lock-in, vendor 

abandonment, conflicting vendor goals, etc.

In many cases, OSS approaches have the potential to 
increase functionality, quality, and flexibility, while 

lowering cost and development time



7

OSS Challenges

1. Ensuring OSS fairly considered in acquisitions
• Some acquisition processes/policies not updated for OSS
• Policy noncompliance (FAR’s market research, “OSS neutral”)
• Many PMs unfamiliar with OSS: don’t consider using or creating
• Many COTS OSS projects ignore solicitations & RFPs

2. Different economics: Pay-up-front for improvements
• Some policies presume proprietary COTS’ pay-per-use model
• Can pay in $ or time, can compete, can cost-share with other users

3. Transition costs if pre-existing system
• Especially if dependent on proprietary formats/protocols/APIs
• Use open standards so can switch (multi-vendor, no ‘RAND’ patents)
• Web-based apps/SOA help if open stds (browser/platform-neutral)
• Vendor lock-in often increases TCO; transition may be worthwhile

4. COTS support if no traditional vendor (compete-able)
5. License compliance (easier but different: education)
6. Cannot release classified code as OSS

• Can build classified systems with/incl. OSS: tables, layers, licenses



8

Examples of OSS in U.S. 
Government

• Use – pervasive
– OSS “plays a more critical role in the DoD than has generally 

been recognized”; inc. Linux, Samba, Apache, Perl, GCC, 
GNAT, XFree86, OpenSSH, bind, and sendmail. [MITRE 2003]

– “devIS saves its clients a minimum of $100,000 per contract by 
using OSS” [NewsForge]

– Often unaware it’s OSS
• Government-paid improvements of OSS

– OpenSSL (CC evaluation), Bind (DNSSEC), GNAT, …
• Government-developed OSS

– BSD TCP/IP suite, Security-Enhanced Linux (SELinux), 
OpenVista, Expect, EZRO, Evergreen (Georgia), …

• U.S. federal policies explicitly neutral: OSS, or not, is fine
– OMB memo M-04-16, DoD memo “OSS in DoD”
– Examine all licenses before commit (GPL fine)



9

Selecting COTS: What’s the Same? 
(OSS vs. Proprietary)

• Negotiate best options with all parties, then select
• Evaluate by winnowing out top candidates for your needs

– Identify candidates, Read Reviews, Compare (briefly) to needs 
through criteria, Analyze top candidates

• Evaluation criteria - same
– Functionality, total cost of ownership, support, maintenance/ 

longevity, reliability, performance, scalability, flexibility, 
legal/license (inc. rights and responsibilities – OSS always 
gives right to view, modify, and redistribute ), mkt share, other

• Warranty & indemnification (“who do you sue?”)
– Generally disclaimed by both proprietary & OSS licenses

• Pay for installation, training, support (time and/or money)
• Developer trustworthiness usually unknown

– Mitigation: Can review OSS code & sometimes proprietary
– Mitigation: Supplier due diligence; often main OSS developers 

and integrators determinable
– Remember: Selling company often not developer



10

Selecting COTS: What’s Different? 
(OSS vs. Proprietary)

• Process/code openness means more&different 
sources of evaluation information for COTS OSS

– Bug databases, mailing list discussions, …
– Anyone (inc. you) can evaluate in detail
– See http: //www.dwheeler.com/oss_fs_eval.html

• Proprietary=pay/use, OSS=pay/improvement
– In OSS, pay can be time and/or money

• Support can be competed & changed
– OSS vendors, government support contracts, self

• OSS can be modified & redistributed
– New option, but need to know when to modify
– Forking usually fails; generally work with community



11

Starting OSS Project

• Check usual project-start requirements
– Is there a need, no/better solution, TCO, etc.
– Examine OSS approach; similar to GOTS, with greater 

opportunity for cost-sharing, but greater openness
• Purpose is cost-sharing: remove barriers to entry

– Use common license well-known to be OSS (GPL, LGPL, 
MIT/X, BSD-new) – don’t write your own license

– Establish project website (mailing list, tracker, source)
– Document scope, major decisions
– Use typical infrastructure, tools, etc. (e.g., SCM)
– Maximize portability, avoid proprietary langs/libraries
– Must run - Small-but-running better than big-and-not
– Establish vetting process(es) before government use

• Government-paid lead? Testing? Same issues: proprietary
• Many articles & books on subject



12

Security

• Neither OSS nor proprietary are always more secure
– Many specific OSS programs are significantly more secure; 

see quantitative studies “Why…” at http://www.dwheeler.com
• OSS advantage: Open design principle

– Saltzer & Schroeder [1974/1975], “Protection mechanism must 
not depend on attacker ignorance”

• Hiding source code doesn’t impede attacks
– “Security by Obscurity” requires real secret-keeping: can’t 

give access to source code, executable program, or website
• Attackers can modify OSS and proprietary software

– Trick is to get that modified version into supply chain
– OSS: subverting/misleading/becoming the trusted developers 

or trusted repository/distribution, and none notice attack later
• OSS security requirements:

– Developers/reviewers need security knowledge
– People have to actually review the code: yes, it really happens!
– Problems must be fixed, fixes deployed



13

Foolish vs. Sensible Policies

• Foolish: “No OSS” or “No GPL”
– Tremendous competitive/strategic disadvantage
– Essentially the same idea as “no COTS” decades ago

• Often focused on General Public License (GPL):
– ~ “Someone given binary must get source code too”
– GPL is most popular OSS license by far (52%-88%)
– Some proprietary companies advocate “no GPL” as 

veiled anti-OSS campaign, to inhibit competition
• Sensible: “Examine OSS & proprietary options, 

then review all their licenses before including”
– Ensure all licenses are compatible with intended use
– Proprietary EULAs sometimes worse than OSS licenses
– GPL often fine once considered in context
– Examine supplier – again, for OSS and proprietary



14

Concluding Remarks

• OSS options should always be considered
– Both choosing COTS OSS & creating new OSS project
– Components or even whole project (depending on need)
– Not always best choice, but foolish to ignore

• OSS can be very flexible & often lowers costs
– Directly and as competition to non-OSS (keep options open!)

• OSS raises strategic questions for governments
– How pool users to start OSS projects when appropriate?
– Educating PMs on OSS, deploying fully open architectures
– Research: default to OSS (with some common OSS license)
– Eliminating software patents

• Projects should change to consider OSS approaches:
– PM education: OSS differences, fears, always consider option
– Classified systems: separate data & program, layer programs
– Open standards so can change later (e.g., browser-neutral)

• Require & operationally demonstrate that can switch components



15

Security Backup Slides



16

Extreme claims

• Extreme claims
– “FLOSS is always more secure”
– “Proprietary is always more secure”

• Reality: Neither FLOSS nor proprietary always 
better

– Some specific FLOSS programs are more secure than 
their competing proprietary competitors

• Include FLOSS options when acquiring, then 
evaluate



17

FLOSS Security (1)

• Browser “unsafe” days in 2004: 98% Internet Explorer, 15% 
Mozilla/Firefox (half of Firefox’s MacOS-only)

• IE 21x more likely to get spyware than Firefox [U of Wash.]
• Faster response: Firefox 37 days, Windows 134.5 days 
• Evans Data: Linux rarely broken, ~virus/Trojan-free
• Serious vulnerabilities: Apache 0, IIS 8 / 3yrs
• J.S. Wurzler hacker insurance costs 5-15% more for 

Windows than for Unix or Linux
• Bugtraq vulnerability 99-00: Smallest is OpenBSD, Windows 

largest (Don't quintuple-count!)
• Windows websites more vulnerable in practice

17% (GNU/Linux)66% (Windows)Defaced

66.75% (Apache)24.81% (IIS)Deployed websites (by name)

29.6% (GNU/Linux)49.6% (Windows)Deployed Systems

FLOSSProprietaryCategory



18

FLOSS Security (2)

• Unpatched networked systems: 3 months Linux, 
hours Windows (variance minutes ... months)
[Honeynet.org, Dec 2004]

– Windows SP2 believed to be better than previous 
versions of Windows

• 50% Windows vulnerabilities are critical, vs. 10% in 
Red Hat [Nicholas Petreley, Oct 2004]

• Viruses primarily Windows phenomenon
– 60,000 Windows, 40 Macintosh, 5 for commercial Unix 

versions, 40 for Linux
• 91% broadband users have spyware on their home 

computers (proprietary OS) [National Cyber Security 
Alliance, May 2003] vs. ~0% on FLOSS



19

FLOSS Security (3)

• FLOSS systems scored better on security 
[Payne, Information Systems Journal 
2002]

• Survey of 6,344 software development 
managers  April 2005 favored FLOSS [BZ 
Research]



20

Reliability

• Fuzz studies found FLOSS apps
significantly more reliable [U Wisconsin]

– Proprietary Unix failure rate: 28%,23%
– FLOSS: Slackware Linux 9%, GNU utilities 6%
– Windows: 100%; 45% if forbid certain Win32 message formats

• GNU/Linux vs. Windows NT 10 mo study [ZDNet]
– NT crashed every 6 weeks; both GNU/Linuxes, never

• IIS web servers >2x downtime of Apache [Syscontrol AG]
• Linux kernel TCP/IP had smaller defect density [Reasoning]

0

100

Failure Rate

0

0.5

1

Reported Repaired

Proprietary Average (0.55, 0.41)

Linux kernel (0.10, 0.013)



21

FLOSS Always More Secure?

• No: Sendmail, bind 4
• Must examine case-by-case

– But there is a principle that gives FLOSS a 
potential advantage…



22

Open design:
A security fundamental

• Saltzer & Schroeder [1974/1975] - Open design 
principle

– the protection mechanism must not depend on attacker 
ignorance

• FLOSS better fulfills this principle
• Security experts perceive FLOSS advantage

– Bruce Schneier: “demand OSS for anything related to 
security”

– Vincent Rijmen (AES): “forces people to write more clear 
code & adhere to standards”

– Whitfield Diffie: “it’s simply unrealistic to depend on 
secrecy for security”



23

Problems with hiding source & 
vulnerability secrecy

• Hiding source doesn’t halt attacks
– Presumes you can keep source secret

• Attackers may extract or legitimately get it
– Dynamic attacks don’t need source or binary

• Observing output from inputs sufficient for attack
– Static attacks can use pattern-matches against binaries
– Source can be regenerated by disassemblers & 

decompilers sufficiently to search for vulnerabilities
– Secrecy inhibits helpers, while not preventing attackers
– “Security by Obscurity” widely denegrated

• Hiding source slows vulnerability response
• Vulnerability secrecy doesn’t halt attacks

– Vulnerabilities are a time bomb and are likely to be 
rediscovered by attackers

– Brief secrecy works (10-30 days), not months/years



24

Can “Security by Obscurity” be 
a basis for security?

• “Security by Obscurity” can work, but iff:
– Keeping secret actually improves security
– You can keep the critical information a secret

• For obscurity itself to give significant security:
– Keep source secret from all but a few people. Never sell or 

reveal source to many.  E.G.: Classify
– Keep binary secret; never sell binary to outsiders

• Use software protection mechanisms (goo, etc.)
• Remove software binary before exporting system

– Do not allow inputs/outputs of program to be accessible by 
others – no Internet/web access

• Useless in most cases!
– Incompatible with proprietary off-the-shelf model

• Proprietary software can be secure – but not this way



25

FLOSS Security Preconditions
(Unintentional vulnerabilities)

1. Developers/reviewers need security 
knowledge

– Knowledge more important than licensing
2. People have to actually review the code

– Reduced likelihood if niche/rarely-used, few 
developers, rare computer language, not 
really FLOSS

– More contributors, more review
• Is it truly community-developed?

– Evidence suggests this really happens! (next)
3. Problems must be fixed

– Far better to fix before deployment
– If already deployed, need to deploy fix



26

Is FLOSS code ever examined? 
Yes.

• Most major FLOSS projects have specific code reviews; 
some have rewards

– Mozilla Security Bug Bounty Program ($500)
– Linux: hierarchical review, “sparse” tool

• Disseminated review groups (second check):
– OpenBSD (for OpenBSD)
– Debian-audit (for Debian Linux)

• Static analysis tool vendors test using FLOSS
• Vulnerability Discovery and Remediation, Open Source 

Hardening Project (DHS/Coverity/Stanford)
• Many independents (see Bugtraq, etc.)
• Business case: Must examine to change (reason to review)
• Users' increased transparency encourages examination & 

feedback



27

Evaluating FLOSS?
Look for evidence

• First, identify your security requirements
• Look for evidence at FLOSS project website

– User’s/Admin Guides: discuss make/keep it secure?
– Process for reporting security vulnerabilities?
– Cryptographic signatures for current release?
– Developer mailing lists discuss security issues and 

work to keep the program secure?
– Active community

• Use other information sources where available
– E.G., CVE… but absence is not necessarily good
– External reputation (e.g., OpenBSD)

• See http://www.dwheeler.com/oss_fs_eval.html



28

Proprietary advantages…
not necessarily

• Experienced developers who understand security produce 
better results

– Experience & knowledge are critical, but...
– FLOSS developers often very experienced & 

knowledgeable too (BCG study: average 11yrs 
experience, 30 yrs old) – often same people

• Proprietary developers higher quality?
– Dubious; FLOSS often higher reliability,security
– Market rush often impairs proprietary quality

• No guarantee FLOSS is widely reviewed
– True! Unreviewed FLOSS may be very insecure
– Also true for proprietary (rarely reviewed!). Check it!

• Can sue vendor if insecure/inadequate
– Nonsense.  EULAs forbid, courts rarely accept, costly to 

sue with improbable results, you want sw not a suit



29

Inserting malicious code & 
FLOSS: Basic concepts

• “Anyone can modify FLOSS, including attackers”
– Actually, you can modify proprietary programs too…

just use a hex editor.  Legal niceties not protection!
– Trick is to get result into user supply chain
– In FLOSS, requires subverting/misleading the trusted 

developers or trusted repository/distribution…
– and no one noticing the public malsource later

• Different threat types: Individual...nation-state
• Distributed source aids detection
• Large community-based FLOSS projects tend to 

have many reviewers from many countries
– Makes attacks more difficult
– Consider supplier as you would proprietary software
– Risk larger for small FLOSS projects



30

Malicious attack approaches:
FLOSS vs. proprietary

• Repository/distribution system attack
– Traditional proprietary advantage: can more easily disconnect 

repository from Internet, not shared between different groups
• But development going global, so disconnect less practical

– Proprietary advantage: distribution control
– OSS advantage: Easier detection & recovery via many copies

• Malicious trusted developers
– OSS slight advantage via review, but weak (“fix” worse!)
– OSS slight advantage: More likely to know who developers are
– Reality: For both, check who is developing it!

• Malicious untrusted developer
– Proprietary advantage: Fewer untrusted developers

• Sub-suppliers, “Trusted” developers may be malicious
– OSS long-term advantages: Multiple reviewers (more better)

• Unclear winner – No evidence proprietary always better



31

Examples: Malicious code & 
FLOSS

• Linux kernel attack – repository insertion
– Tried to hide; = instead of ==
– Attack failed (CM, developer review, conventions)

• Debian/SourceForge repository subversions
– Countered & restored by external copy comparisons

• Often malicious code made to look like unintentional code
– Techniques to counter unintentional still apply
– Attacker could devise to work around tools... but won't 

know in FLOSS what tools are used!
• Borland InterBase/Firebird Back Door

– user: politically, password: correct
– Hidden for 7 years in proprietary product
– Found after release as FLOSS in 5 months
– Unclear if malicious, but has its form



32

Security Preconditions
(Malicious vulnerabilities)

• Counter Repository/distribution system attack
– Widespread copies, comparison process
– Evidence of hardened repository
– Digitally signed distribution

• Counter Malicious trusted developers
– Find out who's developing your system (always!)

• Counter Malicious untrusted developer
– Strong review process

• As with unintentional vulnerabilities: Security-
knowledgeable developers, review, fix what's found

– Update process, for when vulnerabilities found



33

High Assurance

• High assurance (HA) software:
– Has an argument that could convince skeptical parties 

that the software will always perform or never perform
certain key functions without fail... convincing evidence 
that there are absolutely no software defects. CC EAL 6+

– Significant use of formal methods, high test coverage
– High cost – requires deep pockets at this time
– A few OSS & proprietary tools to support HA dev
– Few proprietary, even fewer OSS HA at this time

• Theoretically OSS should be better for HA
– In mathematics, proofs are often wrong, so only peer 

review of proofs valid [De Millo,Lipton,Perlis]. OSS!
• HA developers/customers very conservative & results often 

secret, so rarely apply “new” approaches like OSS... yet
– Cannot easily compare in practice... yet



34

Can FLOSS be applied to 
custom systems?

• Effective FLOSS systems typically have 
built a large development community

– Share costs/effort for development & review
– Same reason that proprietary off-the-shelf works: Multiple 

customers distribute costs

• Custom systems can be built from FLOSS 
(& proprietary) components

• If no pre-existing system, sometimes can 
create a generalized custom system

– Then generalized system FLOSS, with a custom 
configuration for your problem

– Do risk/benefit analysis before proceeding



35

Bottom Line

• Neither FLOSS nor proprietary always 
better

– But clearly many cases where FLOSS is better
• FLOSS use increasing industry-wide

– In some areas, e.g., web servers, it dominates
• Policies must not ignore or make it 

difficult to use FLOSS where applicable
– Can be a challenge because of radically 

different assumptions & approach
• Include FLOSS options when acquiring, 

then evaluate



36

Quantitative Studies - Backup Slides



37

Outline of Quantitative 
Information on OSS/FS

Quantitatively show “consider using OSS/FS 
software”:

– Market Share
– Reliability
– Performance
– Scalability
– Security
– Total cost of ownership
– Non-quantitative

Numbers won't show OSS/FS always technically 
better
This presentation does not necessarily represent the 
views of the U.S. Government or U.S. DoD, & is based 
on personal work



38

Market Share: Web Servers

• Active Sites: Apache 66.75%, Microsoft IIS 24.81% 
in Feb 2003 (counting by name; 35.86M sites)

• For SSL, Apache 53.97%, IIS 34.85% Sep02



39

Other Market Share Examples

• GNU/Linux #2 webserver OS Jun01
– GNU/Linux 29.6%, Windows 49.6%, BSDs 6.1%

• GNU/Linux #2 server OS sold 99, 00, 01 (24%, 27%, 25%)
• DNS: bind supports 95% of reverse-lookups
• PHP #1 server-side scripting language
• Sendmail #1 Email server

– Sendmail 42%, Microsoft Exchange 18%
• OpenSSH #1 SSH (66.8% Apr02)

• Small (1.7-3.8%) 2002 desktop share
– Microsoft 92% in 2000, but usable OSS/FS apps just 

released in 2002, so could change over time



40

Reliability

• Fuzz studies found OSS/FS apps
significantly more reliable [U Wisconsin]

– Proprietary Unix failure rate: 28%,23%
– OSS/FS: Slackware Linux 9%, GNU utilities 6%
– Windows: 100%; 45% if forbid certain Win32 message formats

• GNU/Linux vs. Windows NT 10 mo study [ZDNet]
– NT crashed every 6 weeks; both GNU/Linuxes, never

• IIS web servers >2x downtime of Apache [Syscontrol AG]
• Linux kernel TCP/IP had smaller defect density [Reasoning]

0

100

Failure Rate

0

0.5

1

Reported Repaired

Proprietary Average (0.55, 0.41)

Linux kernel (0.10, 0.013)



41

Performance

• Performance always varies by circumstance
• TPC-C: GNU/Linux faster than Windows
• PC Magazine: GNU/Linux with Samba faster 

fileserving at Windows' own file protocols
– Nov 2001, top end, 130MB/sec vs. 78MB/sec
– April 2002, performance 2x; 4x many clients

• Sys Admin: untuned GNU/Linux fastest

61323983990542Disk I/O (seconds)

0.90.911.3Email (M msg/hr)

Windows 2000FreeBSDSolaris on IntelGNU/LinuxMeasure



42

Scalability

• GNU/Linux and NetBSD support more 
hardware platforms & performance ranges

– PC hardware, PDAs, mainframes, clusters, 
supercomputers

• OSS/FS can develop large software 
systems

– Red Hat Linux 7.1 had 30million SLOC
– Represents approximately 8,000 person-years
– To re-develop proprietary, $1 Billion USD



43

Security

• J.S. Wurzler hacker insurance costs 5-15% more 
for Windows than for Unix or Linux

• Windows websites disproportionately vulnerable

• Bugtraq vulnerability: Smallest is OpenBSD, 
Windows largest (Don't quintuple-count!)

• Worst vulnerabilities (takeover): Apache 0, IIS 8
(Jun98-Jun01)

• OSS/FS not invulnerable!

17% (GNU/Linux)66% (Windows)Defaced

66.75% (Apache)24.81% (IIS)Deployed websites (by name)

29.6% (GNU/Linux)49.6% (Windows)Deployed Systems

OSS/FSProprietaryCategory



44

Total Cost of Ownership (TCO)

• TCO multifaceted & sensitive to circumstances
• OSS/FS costs less to acquire than proprietary

– E.G., Web server, Windows $3610 vs. $156
• Some other factors also tend to be lower

– Lower upgrade costs, can use cheaper hardware
– Avoids license management & litigation

• Cybersource: TCO 24%-34% less w/OSS/FS 
• InfoWorld Survey of CTOs:

– 60% CTOs: >$50K/yr savings
– 32% CTOs: > $250K/yr savings (inc. above)



45

Non-Quantitative

• To many, non-quantitative advantages of 
OSS/FS are more important

– Social/ethical/moral reasons
– Avoids risks of single source solutions

• Reversible decision: can switch or self-support if vendor jacks up 
price, maliciously changes interface, drops support, …

– (Can) avoid security risks of monocultures
– Avoids license management and litigation
– Supports domestic IT infrastructure
– Many believe it encourages innovation
– Greater flexibility

• Can change software (or hire its change) to meet needs



46

Conclusions on Quantitative 
OSS/FS Information

• Many, many cases where OSS/FS 
programs have some measurable 
advantage over proprietary competition

• Consider using OSS/FS software when 
acquiring software

• For more detailed information, see
http://www.dwheeler.com/oss_fs_why.html



47

Conclusions

• Many similarities and differences in 
acquisition for OSS

– Need to know & handle differences, challenges
• Need to know how to evaluate OSS

– General approach similar
– Ways to acquire information differ

• Quantitative evidence that OSS is worth 
considering

– I don’t think it’s always the right answer, but 
it’s always worth considering



48

Miscellaneous Backup Slides



49

Major OSS/FS Licenses

• Many licenses, but 4 dominate
• BSD-new & MIT license: anything but sue

– Can incorporate code into proprietary software
– Financial incentive to use, but not aid project

• General Public License (GPL): “Copyleft”
– If distribute, must distribute source code or 

provide written offer to do so
– Cannot link (embed) into proprietary software

• Lesser/Library GPL - a compromise
– Must distribute source code/written offer, but 

only of component itself
– Can link into proprietary software

• Public domain is OSS/FS, but rare



50

GPL Use Widespread

• GPL has widespread use, other licenses far less common
– Freshmeat.net (2003): 69.66% GPL, 5.29% LGPL, 4.82% BSD 

licenses (combined)
– SourceForge.net (2003): 71% GPL, 10% LGPL, 7% BSD
– Red Hat Linux 7.1:  50.36% GPL solely (55.3% dual), 8.28% MIT, 

7.64% LGPL
– FSF free software directory (2002): 87.9% GPL, 6.6% LGPL, 

2.0% BSD or BSD-like, 1.9% Artistic, 0.3% MIT
– MITRE DoD survey (2003): 52% GPL, 6% BSD, 5% Apache, 4% 

various "Community“, 3% LGPL
• Many big OSS projects changed to GPL-compatible

– Python, vim, Mozilla, Zope, BSD, Apache (?), Qt, Wine, 
Alfresco

• XFree86 project died trying to become GPL-incompatible
• Avoid GPL-incompatible OSS licenses (risk of failure)
• Use common compatible licenses for new OSS projects

– In particular: GPL, LGPL, MIT/X, or BSD-new



51

Unnecessary Fears

• Will OSS/FS destroy intellectual property? No.
– Usually, complaint is about GPL
– GPL trades you the right to freely incorporate 

their code into your software in exchange for 
the right to freely incorporate your code [which 
incorporates their code] into theirs

– Intellectual property traded for other 
intellectual property

– Microsoft sells GPL'ed software



52

Unnecessary Fears

• Viewing and changing source code valuable for non-
programmers? Surprisingly, yes.

– “Would you buy a car with the hood welded shut? If not, 
what do you know about modern … engine technology?”
[Bob Young]

– Consumers demand this so they can have control over 
their products, instead of dealers

• Anti-Microsoft campaign? No, not by all.
– Jun02, 831 projects use Visual Basic; 8867 projects work 

on Windows [SourceForge]
– Microsoft has been repeatedly asked to join community
– Microsoft sells GPL'ed software



53

Acronyms

• COTS: Commercial Off-the-Shelf (either 
proprietary or OSS)

• DoD: Department of Defense
• HP: Hewlitt-Packard Corporation
• JTA: Joint Technical Architecture (list of 

standards for the DoD); being renamed to DISR
• OSDL: Open Source Development Labs
• OSS: Open Source Software
• RFP: Request for Proposal
• RH: Red Hat, Inc.
• U.S.: United States

Trademarks belong to the trademark holder.



54

Interesting Documents/Sites

• “Why OSS/FS? Look at the Numbers!”
http://www.dwheeler.com/oss_fs_why.html

• “Use of Free and Open Source Software in the US Dept. of 
Defense” (MITRE, sponsored by DISA)

• President's Information Technology Advisory Committee 
(PITAC) -- Panel on Open Source Software for High End 
Computing, October 2000

• “Open Source Software (OSS) in the DoD,” DoD memo 
signed by John P. Stenbit (DoD CIO), May 28, 2003

• Center of Open Source and Government (EgovOS) 
http://www.egovos.org/

• OpenSector.org http://opensector.org
• Open Source and Industry Alliance http://www.osaia.org
• Open Source Initiative http://www.opensource.org
• Free Software Foundation http://www.fsf.org
• OSS/FS References 

http://www.dwheeler.com/oss_fs_refs.html


