
Advanced Math: Notes on Lessons 114-117
David A. Wheeler, 2009-04-14

Lesson 114: Graphs of Factored Polynomial Functions
This lesson explains how to quickly graph polynomials, particularly higher-powered ones; it also helps 
you get a “feel” for what these polynomials do.  The book does a good job on this, so read it; here we’ll 
just note the highlights.

A turning point is “hump” in the graph where it changes direction (it changes from going up to going 
down, or changes from going down to going up).  A polynomial always has fewer turning points than 
its degree, e.g., a fifth-order polynomial has at most 4 turning points.

The sign of the highest-degree term determines the polynomial’s eventual direction as it goes towards 
positive and negative infinity.  The eventual direction when going toward negative infinity is also 
affected by whether that largest exponent is even or odd, e.g., x2 as x goes towards negative infinity is 
positive, but x3 as it goes towards negative infinity is negative.  This is all because if you multiply an 
even number of negative numbers, the result is negative; if you multiply an odd number of negative 
numbers, the result is positive.  If the exponent is positive, then sign of the coefficient is the sign of the 
polynomial as it tends to both positive and negative infinity.  Here’s a table that summarizes this:

Highest-degree term Resulting polynomial value
Coefficient Exponent Example Towards +∞ Towards -∞

+ even 5x2 + +
- even -5x2 - -
+ odd 5x3 + -
- odd -5x3 - +

Finally, there are often zeros (that is, values for x where the polynomial produces 0).  You can find 
these trivially if the polynomial is factored; in (x-2)(x+3), x=2 and x=-3 are zeros.

So for example, if you have f(x) = x(x-2)(3-x), you can quickly figure out its general shape.  First, note 
that this will become a 3rd-degree polynomial, i.e., (x2-2x)(3-x) = -x3 + 5x2 -6x.  Then note:

● Turning points: This is 3rd-degree, so it has at most 2 turning points

● Sign of highest-degree: This is -, and the coefficient is odd, so it will go negative as x goes to 
positive infinity, and it will go positive as x goes to negative infinity

● Zeros: The polynomial evaluates to 0 at x=0, x=2, and x=3 (see the factoring above).

There’s something else of interest - flex points.  If you look at a curve, some curves could “hold water” 
(this is called “concave up”), while others would only hold water if they were upside down (“concave 
down”).  Places where it switches between concave up and concave down are called “flex points”.  See 
the graphs in the book for more.

Now you can try a few additional x values (in particular, ones between the zeros) to see what it does. 
Here’s what you should come up with:
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Lesson 116 will continue with some useful tips.

This lesson introduces a mathematical fact that is far more general: if pq=0, then p is 0, q is 0, or both 
are 0.  This is called the “zero factor theorem”.

Lesson 115: The Remainder Theorem
This lesson is about an interesting oddity that you may find useful in evaluating polynomials: It turns 
out that you can use polynomial division to evaluate the value of a polynomial!

Let’s start with an example.  Let’s say we have the polynomial f(x)=x3+2x2-x+1, and divide it by x-3. 
We will get a new polynomial and the remainder 43:

x32x2−x1
x−3

=x25x14 43
x−3

because 
3 | 1 2 −1 1

 3 15 42
1 5 14 43

Oddly enough, if we compute f(3), that will also be 43:

f x=x32x2−x1
f 3=33232−31=2718−31=43

More generally, if you divide a polynomial f(x) by x-c, the remainder is the same as f(c); this is the 
remainder theorem.

Here’s why this happens - imagine that we have two polynomials, P(x) and Q(x), where Q(x) is the 
result of dividing P(x) by x-c and throwing away the remainder:

Px 
x−c=Qx  r

x−c Given

Px=Qx x−cr Multiply by x-c
Pc =Q cc−cr This is what happens if x=c

Pc=r c-c is zero, zero times anything is zero

(Strictly speaking, this proof is invalid because you can’t divide by zero.  That can be easily solved by 
simply accepting the second step as your starting point, which would be equivalent... but then you 
might not see where it came from.)
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Lesson 116: Region of Interest
(This is a continuation of lesson 114.)

There’s a simple trick for finding the “region of interest” for polynomials - that is, where interesting 
things like the roots, turning points, and flex points are:

1. Divide the whole polynomial by the coefficient of the highest-degree term; the result is the 
normalized polynomial equation.

2. Find the largest coefficient ignoring the sign (i.e., the absolute value), and add one to it; this is 
the radius of the region of interest.

The “region of interest” is inside the circle whose center is the origin, and whose radius is the radius of 
the region of interest.  All roots (real and complex) are within the circle; in addition, the x values of all 
the turning points and flex points are within the circle.

For example, given:

2x3 + 4x2 - 6x +4

We first create the normalized polynomial... in this case by dividing by 2 (the coefficient of x3):

x3 + 2x2 - 3x +2

The largest coefficient, ignoring the sign, is 3.  Thus a circle centered at the origin with radius 3+1=4 
will contain all the polynomial roots, as well as the x values of its turning points and flex points.

Lesson 117: Prime and Relatively Prime Numbers / Rational Roots 
Theorem

Prime and Relatively Prime
This section emphasizes definitions that you probably already know.

Composite number: A counting number(1, 2,...) that can be expressed as the product of two other 
counting numbers both greater than 1.  E.G., 12 is composite because 12=2x2x3.

Prime number: A counting number that is not composite.  E.G., 7 is prime because the only counting 
number product that produces 7 is 1x7.

Relatively prime: Counting numbers whose only common factor is 1.  E.G., 25 and 27 are relatively 
prime, even though neither one is a prime number (5x5 and 3x3x3).

Fundamental theorem of arithmetic: Every time a counting number is written as a product of prime 
factors, the same factors must be used.

Rational Roots Theorem
Roots of polynomial f(x) are the value of x where f(x)=0; there’s an algorithm to find all rational roots.

First, two useful facts to know:

1. Every polynomial of degree n has exactly n roots (though the roots may duplicate).

2. If a real polynomial (all coefficients are real) has a+bi as a root, then a-bi is also a root.
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A shortcut to root-finding is the rational root theorem, which says that if you have a polynomial 
equation of the form axn + ... +z = 0, where a is the coefficient of the highest-degree term, z is the 
constant, and all   coefficients (including z) are integers  , then all the rational roots (if any) have form:

Rational roots=± factors of constant z
factors of coefficient a

So, you can simply create a list of all the possible rational roots, and then calculate the polynomial for 
each value to see if it produces 0... if it does, then it’s a root.  Note: If the polynomial equation includes 
non-integers, just multiply both sides by some number to make all the coefficients integers.

Of course, this doesn’t tell you if there are rational roots; some or all may be irrational or complex. 
But it can help, and this works with any power.  The quadratic equation can find the roots for any 
polynomial of degree 2, but it won’t help beyond 2.  What’s more, once you find the rational roots, that 
can help you factor the polynomial into something smaller, which may be the key to the rest.  E.G., if 
“5” is a root, then the whole polynomial = (x-5)(something else); that means you can divide the 
equation by x-5 and see what’s left to factor.

So for 12x8+5x2+2=0, using this approach, we can list the possible rational roots as:
±{1, 2}

{1,2, 3, 4,6,12 }
=±1,±1

2
,±1

3
,±1

4
,±1

6
,± 1

12
,±2, (skipping duplicates )±2

3

The “skipping duplicates” is where combinations are skipped because they are duplicate values we’ve 
already listed.  E.G., 2/2 is a possible combination, but 2/2 equals 1 and we already listed that.  To see 
if any are an actual root, insert them into the original polynomial and see if they evaluate to zero.  Use 
the remainder theorem (lesson 115, above) to do that quickly, and you can quickly find rational roots!

Aside: The general approaches to polynomials in this lesson and others (such as114 and 116) exist 
because as polynomial degrees get larger, exact solutions are much harder.  The quadratic equation is a 
single equation which solves polynomials of degree 2.  In 1824, Niels Henrik Abel proved that there 
can be no general formula (involving only the arithmetical operations and radicals) for the roots of a 
polynomial of degree 5 or greater in terms of its coefficients (this is the “Abel-Ruffini theorem”). 
There are equations that solve polynomials for degrees 3 and 4, and they’ve been known for hundreds 
of years, but they are much more complicated. I do not expect you to memorize those – they’re the kind 
of thing you look up if you need them.  For example, here’s the general equation for degree 3:

f(x) = ax3+bx2+cx+d

You can factor it into a(x-x1)(x-x2)(x-x3) by finding the roots x1, x2, and x3 this way:

Let q=3ac−b2

9a2 and r=9abc−27a2 d−2b3

54a3

Let s= 3rq3r2and t= 3r−q3r2

Then x1=st− b
3a

, x2=−
1
2
st − b

3a
3

2
s−t i , x3=−

1
2
 st − b

3a
−3

2
 s−t i

Again, I do not expect you to memorize this solution for degree 3!!  I show this only to show that 
things get complicated quickly as the degrees get larger.  That is why general approaches, that work 
with polynomials of arbitrary degree, are needed.
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